2018-02-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 12 , Vol. 01 , 2003    Two-dimensional near-infrared photonic crystal fabrication by generation of void channels in solid resin

Two-dimensional near-infrared photonic crystal fabrication by generation of void channels in solid resin
Guangyong Zhou, Michael James Ventura, Min Gu
Centre for Micro-Phtonics and the Centre for Ultrahigh-Highwidth Devices for Optical Systems, School of BiophysicalSciences and Electrical Engineering, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

Chin. Opt. Lett., 2003, 01(12): pp.719-719-

Topic:Optical devices
Keywords(OCIS Code): 230.4000  160.5470  300.6340  

Two-dimensional (2D) triangular void channel photonic crystals with different lattice constants stacked in two different directions were fabricated by using femtosecond laser micro-explosion in solid polymer material. Fundamental and higher-order stop gaps were observed both in the infrared transmission and reflection spectra. There is an approximately linear relationship between the gap position and the lattice constant. The suppression of the fundamental gap is as high as 70% for 24-layer structures stacked in the Γ-M direction.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (459 KB)


Posted online:

Get Citation: Guangyong Zhou, Michael James Ventura, Min Gu, "Two-dimensional near-infrared photonic crystal fabrication by generation of void channels in solid resin," Chin. Opt. Lett. 01(12), 719-719-(2003)

Note: This work was produced with the assistance of the Australian Research Council (ARC) under the ARC Centres of Excellence Program. G. Zhou’s e-mail address is gzhou@swin.edu.au.


1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

2. S. John, Phys. Rev. Lett. 58, 2486 (1987).

3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

4. Z. Y. Li and Z. Q. Zhang, Phys. Rev. B 63, 1516 (2000).

5. H. S. Sozuer and J. W. Haus, J. Opt. Soc. Am. B 10, 296 (1993).

6. B. Temelkuran, C. M. Soukoulis, and K. M. Ho, Appl. Phys. A 66, 363 (1998).

7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Simth, T. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).

8. T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, and A. Polman, J. Vac. Sci. Tech. B 17, 2734 (1999).

9. H. Y. Ryu, H. G. Park, and Y. H. Lee, IEEE J. Sel. Top. Quantum Elctron. 8, 891 (2002).

10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O. Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).

11. E. Chow, S. Y. Lin, S. G. Hohnson, P. R. Villeneuve, J. D. Hoannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).

12. N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, and T. Takemori, Phys. Rev. Lett. 86, 2289 (2001).

13. M. J. Ventura, M. Straub, and M. Gu, Appl. Phys. Lett. 82, 1649 (2003).

14. M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387