2018-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 04 , 2006    Steady state and time-resolved autofluorescence studies of human colonic tissues

Steady state and time-resolved autofluorescence studies of human colonic tissues
Buhong Li1;2, Zhenxi Zhang1, Shusen Xie2
1Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, [Xi'an Jiaotong University], Xi'an 710029
2Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, and Institute of Laser and Optoelectronics Technology, [Fujian Normal University], Fuzhou 350007

Chin. Opt. Lett., 2006, 04(06): pp.348-350-3

Topic:Medical optics and biotechnology
Keywords(OCIS Code): 170.6280  170.6510  300.0300  

Steady state and time-resolved autofluorescence spectroscopies are employed to study the autofluorescence characteristics of human colonic tissues in vitro. The excitation wavelength varies from 260 to 540 nm, and the corresponding fluorescence emission spectra are acquired from 280 to 800 nm. Significant difference in fluorescence intensity of excitation-emission matrices (EEMs) is observed between normal and tumor colonic tissues. Compared with normal colonic tissue, low nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), and high amino acids and protoporphyrin IX (PpIX) fluorescences characterize high-grade malignant tissue. Moreover, the autofluorescence lifetimes of normal and carcinomatous colonic tissues at 635 nm under 397-nm excitation are about 4.32+-0.12 and 18.45+-0.05 ns, respectively. The high accumulation of endogenous PpIX in colonic cancers is demonstrated in both steady state and time-resolved autofluorescence spectroscopies.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (0 KB)


Posted online:

Get Citation: Buhong Li, Zhenxi Zhang, Shusen Xie, "Steady state and time-resolved autofluorescence studies of human colonic tissues," Chin. Opt. Lett. 04(06), 348-350-3(2006)

Note: This work was supported by the China Postdoctoral Science Foundation (No. 2004036138), and the Scientific Research Program of Fujian Province, China (No. JA03024). We thank Professor Mingren Li at the Department of Oncology of the First Affiliated Hospital of Fujian Medical University for providing the colonic tissue samples and the results of standard histopathological evaluation. B. Li's e-mail address is bhli@fjnu.edu.cn.


1. M. Monici, Biotechnol. Ann. Rev. 11, 227 (2005).

2. G. Bottiroli and A. C. Croce, in Lasers and Current Optical Techniques in Biology G. Palumbo and R. Pratesi (eds.) (Royal Society of Chemistry, Cambridge, 2004) pp.189-210.

3. N. K. Chaudhury, S. Chandra, and T. L. Mathew, Appl. Biochem. Biotechnol. 96, 183 (2001).

4. R. R. Allison, H. C. Mota, and C. H. Sibata, Photodiagnosis and Photodynamic Therapy 1, 263 (2004).

5. B. H. Li and S. S. Xie, Spectrosc. Spect. Anal. (in Chinese) 25, 1083 (2005).

6. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, Photochem. Photobiol. 53, 777 (1991).

7. Banerjee, B. Miedema, and H. R. Chandrasekhar, Am. J. Med. Sci. 316, 220 (1998).

8. R. S. DaCosta, H. Andersson, M. Cirocco, N. E. Marcon, and B. C. Wilson, J. Clin. Pathol. 58, 766 (2005).

9. L. C. Kwek, S. Fu, T. C. Chia, C. H. Diong, C. L. Tang, and S. M. Krishnan, Appl. Opt. 44, 4004 (2005).

10. R. Richards-Kortum and E. Sevick-Muraca, Ann. Rev. Phy. Chem. 47, 555 (1996).

11. K. T. Moesta, B. Ebert, T. Handke, D. Nolte, C. Nowak, W. E. Haensch, R. K. Pandey, T. J. Dougherty, H. Rinneberg, and P. M. Schlag, Cancer Res. 61, 991 (2001).

12. B. Mayinger, M. Jordan, P. Horner, C. Gerlach, S. Muehldorfer, B. R. Bittorf, K. E. Matzel, W. Hohenberger, E. G. Hahn, and K. Guenther, J. Photochem. Photobiol. B 70, 13 (2003).

13. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, J. Photochem. Photobiol. B 31, 101 (1995).

14. M. Anidjar, O. Cussenot, J. Blais, O. Bourdon, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, and A. Le Duc, J. Urol. 155, 1771 (1996).

15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999).

16. T. Glanzmann, J. P. Ballini, H. van den Bergh, and G. Wagnieres, Rev. Scient. Instrum. 70, 4067 (1999).

17. K. Vishwanath and M. A. Mycek, Opt. Lett. 29, 1512 (2004).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387