2017-12-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 06 , 2008    Investigation of optical emission spectroscopy in diamond chemical vapor deposition by Monte Carlo simulation


Investigation of optical emission spectroscopy in diamond chemical vapor deposition by Monte Carlo simulation
Zhijun Wang, Lifang Dong, Panlai Li, Yong Shang, Shoujie He
College of Physics Science and Technology, [Hebei University], Baoding 071002

Chin. Opt. Lett., 2008, 06(03): pp.218-221-4

DOI:
Topic:Spectroscopy
Keywords(OCIS Code): 300.2140  310.1860  160.4670  

Abstract
The optical emission spectra (atomic hydrogen (H'alpha', H'beta', H'gamma', atomic carbon C (2p3s->2p2: 'lambda'=165.7 nm) and radical CH (A2'Delta'->X2'pi':'lambda'=420-440 nm)) in the gas phase process of the diamond film growth from a gas mixture of CH[EQUATION] and H[EQUATION] by the technology of electron-assisted chemical vapor deposition (EACVD) have been investigated by using Monte Carlo simulation. The results show that the growth rate may be enhanced by the substrate bias due to the increase of atomic hydrogen concentration and the mean temperature of electrons. And a method of determining the mean temperature of electrons in the plasma in-situ is given. The strong dependence on substrate temperature of the quality of diamond film mainly attributes to the change of gas phase process near the substrate surface.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (640 KB)

Share:


Received:2007/8/14
Accepted:
Posted online:

Get Citation: Zhijun Wang, Lifang Dong, Panlai Li, Yong Shang, Shoujie He, "Investigation of optical emission spectroscopy in diamond chemical vapor deposition by Monte Carlo simulation," Chin. Opt. Lett. 06(03), 218-221-4(2008)

Note:



References

1. R. Kuschnereit, P. Hess, D. Albert, and W. Kulisch, Thin Solid Films 312, 66 (1998).

2. G. Fu, X. Wang, W. Yu, L. Han, L. Dong, and X. Li, Appl. Phys. Lett. 70, 1965 (1997).

3. Y.-K. Kim, Y.-S. Han, and J.-Y. Lee, Diam. Relat. Mater. 7, 96 (1998).

4. L. Schafer, C.-P. Klages, U. Meier, and K. Kohse-Hoinghaus, Appl. Phys. Lett. 58, 571 (1991).

5. Y. Shigesato, R. E. Boekenhauer, and B. W. Sheldon, Appl. Phys. Lett. 63, 314 (1993).

6. L. Dong, B. Ma, Y. Shang, and Z. Wang, Plasma Sci. Technol. 3, 2845 (2005).

7. L. Dong, B. Ma, and Z. Wang, Chin. Phys. 13, 1597 (2004).

8. W. A. Yarbrough, K. Tankala, M. Mecray, and T. Debroy, Appl. Phys. Lett. 60, 2068 (1992).

9. H. Tawara, Y. Ltikawa, H. Nishimura, and M. Yoshino, Phys. Ref. Data 19, 617 (1990).

10. G. M. Webb, Phys. Rev. 47, 384 (1935).

11. K. Motohashi, H. Soshi, M. Ukai, and S. Tsurubuchi, Chem. Phys. 213, 369 (1996).

12. Y. Liao, C. Li, Z. Ye, C. Chang, G. Wang, and R. Fang, Diam. Relat. Mater. 9, 1716 (2000).

13. M. C. McMaster, W. L. Hsu, M. E. Coltrin, and D. S. Dandy, J. Appl. Phys. 76, 7567 (1994).

14. J. Cui, Y. Ma, and R. Fang, Science in China (A) (in Chinese) 26, 1038 (1996).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387