2018-11-16 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 01 , Vol. 07 , 2009    10.3788/COL20090701.0074

Field enhancement effect of metal probe in evanescent field
Xiaogang Hong1, Wendong Xu1, Xiaogang Li1, Chengqiang Zhao1, Xiaodong Tang2
1 Optical Storage Laboratory, [Shanghai Institute of Optics and Fine Mechanics], Chinese Academy of Sciences, Shanghai 201800
2 School of Information Science and Technology, [East China Normal University], Shanghai 200241

Chin. Opt. Lett., 2009, 07(01): pp.74-77-4

Topic:Physical optics
Keywords(OCIS Code): 260.3910  240.6680  000.4430  

Field enhancement effect of metal probe in evanescent field, induced by using a multi-layers structure for exciting surface plasmon resonance (SPR), is analyzed numerically by utilizing two-dimensional (2D) TM-wave finite difference time-domain (FDTD) method. In this letter, we used a fundamental mode Gaussian beam to induce evanescent field, and calculated the electric intensity. The results show that compared with the nonmetal probe, the metal probe has a larger field enhancement effect, and its scattering wave induced by field enhancement has a bigger decay coefficient. The field enhancement effect should conclude that the metal probe has an important application in nanolithography.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (693 KB)


Posted online:

Get Citation: Xiaogang Hong, Wendong Xu, Xiaogang Li, Chengqiang Zhao, Xiaodong Tang, "Field enhancement effect of metal probe in evanescent field," Chin. Opt. Lett. 07(01), 74-77-4(2009)

Note: This work was supported by the Shanghai Committee of Science and Technology, China (No.06DJ14007), the Major Program of the National Natural Science Foundation of China (No.60490294), the National Natural Science Foundation of China (No.50502036), and the “Dawn” Program of Shanghai Education Commission of China (No.06SG30). E-mail: xuwendong@siom.ac.cn


1. H. Raether, Surface Plasmon on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988) p.13, p.16.

2. T. Zhang, M. Yi, Z. Fang, H. Yang, J. Yang, Y. Lu, H. Yang, H. Kang, and D. Yang, Physics (in Chinese) 34, 909 (2005).

3. A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, Phil. Trans. R. Soc. Lond. A 362, 807 (2004).

4. Satoshi Kawata (Ed.), Motoichi Ohtsu, Masahiro Irie, Near-Field Optics and Surface Plasmon Polaritons (Spring-Verlag, Berlin, 2001) p.29.

5. J. Grand, M. Lamy de la Chapelle, J. L. Bijeon, P. M. Adam, A. Vial, and P. Royer, Phys. Rev. B 72, 033407 (2005).

6. U. Ch. Fischer and D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).

7. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, Phys. Rev. Lett. 68, 476 (1992).

8. S. I. Bozhvolnyi, I. I. Smolyaninov, and A. V. Zayats, Phys. Rev. B 51, 17916 (1995).

9. I. I. Smolyaninov and David L. Mazzoni, Phys. Rev. B 56, 1601 (1997).

10. Pascal Royer, Dominique Barchiesi, Gilles Lerondel, and Renaud Bachelot, Phil. Trans. R. Soc. Lond. A 362, 821 (2004).

11. D. Haefliger and A. Stemmer, Ultramicroscopy 100, 457 (2004).

12. W. Chen and Q. Zhan, Chin. Opt. Lett. 5, 709 (2007).

13. G. Jian, F. Bai, S. Pan, and S. Wu, Acta Opt. Sin. (in Chinese) 25, 470 (2005).

14. J. Tominaga and T. Nakano, Optical Near-Field Recording: Science and Technology (Springer-Verlag, Berlin, 2005) p.49.


Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号