2 \mu m emission performance of Tm3+-Ho3+ co-doped tellurite glasses
Meng Wang1;2,
Guonian Wang1,
Lixia Yi1;2,
Shunguang Li1,
Lili Hu1,
Junjie Zhang1
1 Key Laboratory of Material Science and Technology for High Power Lasers, [Shanghai Institute of Optics and Fine Mechanics], Chinese Academy of Sciences, Shanghai 201800, China
2 [Graduate School of Chinese Academy of Sciences], Beijing 100049, China
Chin. Opt. Lett.,
2010,
08(01):
pp.78-81-4
DOI:10.3788/COL20100801.0078Topic:Materials
Keywords(OCIS Code):
160.5690 160.4670 300.6280 160.2750
Abstract
The emission properties of 2 \mu m region fluorescence of Tm<sup><sup>3+</sup></sup>-Ho<sup><sup>3+</sup></sup> co-doped tellurite glasses are investigated. Introducing F<sup>-</sup> ions to the composition of tellurite glasses plays a positive effect on the 2 \mu m emission. A maximum intensity of 2 \mu m emission is achieved when 1.5-mol% Tm<sub>2</sub>O<sub>3</sub> and 1-mol% Ho<sub>2</sub>O<sub>3</sub> concentration are doped in the glasses. The emission cross section and gain coefficient of the <sup>5</sup>I<sub>8</sub>-<sup>5</sup>I<sub>7</sub> transition of Ho<sup><sup>3+</sup></sup> are calculated. The emission cross section has a maximum of 1.29×10<sup>-20</sup> cm<sup>2</sup> at 2048 nm wavelength. The results indicate that Tm<sup><sup>3+</sup></sup>-Ho<sup><sup>3+</sup></sup> co-doped tellurite glasses are suitable for 2 \mu m application.
Copyright: © 2003-2012 . This is an open-access article distributed under the terms
of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
View
PDF (651 KB)
Received:2009/3/30
Accepted:
Posted online:
Get Citation:
Meng Wang, Guonian Wang, Lixia Yi, Shunguang Li, Lili Hu, Junjie Zhang, "2 \mu m emission performance of Tm
3+-Ho
3+ co-doped tellurite glasses," Chin. Opt. Lett.
08(01),
78-81-4(2010)
Note:
This work was supported by the National "863" Program of China (No. 2007AA03Z441) and the National Natural Science Foundation of China (Nos. 60607014 and 50572110).
References
1. K. Scholle, E. Heumann, and G. Huber, Laser Phys. Lett. 1, 285 (2004).
2. S. Agger, J. H. Povlsen, and P. Varming, Opt. Lett. 29, 1503 (2004).
3. Y. Li, Y. Ju, Y. Urata, and Y. Wang, Chin. Opt. Lett. 5, 351 (2007).
4. Y. Tang, Y. Yang, X. Cheng, and J. Xu, Chin. Opt. Lett. 6, 44 (2008).
5. X. Zou and H. Toratani, J. Non-Cryst. Solids 195, 113 (1996).
6. L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345&346, 349 (2004).
7. G. Wang, S. Dai, J. Zhang, L. Wen, J. Yang, and Z. Jiang, Spectrochim. Acta Part A 64, 349 (2006).
8. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
9. B. D. O. Richards, S. Shen, and A. Jha, Proc. SPIE 5984, 598407 (2005).
10. G. Chen, Q. Zhang, G. Yang, and Z. Jiang, J. Fluoresc. 17, 301 (2007).
11. D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, J. Non-Cryst. Solids 354, 1955 (2008).
12. D. Shi, Q. Zhang, G. Yang, and Z. Jiang, J. Non-Cryst. Solids 353, 1508 (2007).
13. B. Peng and T. Izumitani, Opt. Mater. 4, 797 (1995).
14. D. E. McCumber, Phys. Rev. 136, A954 (1964).
15. G. Chen, Q. Zhang, G. Yang, Z. Yang, and Z. Jiang, Acta Phys. Sin. (in Chinese) 56, 4200 (2007).
16. Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, J. Non Cryst. Solids 203, 176 (1996).
17. Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, J. Am. Ceram. Soc. 83, 787 (2000).