2017-09-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 08 , 2010    10.3788/COL20100804.0428


Suppressing the disturbance in the transmission spectrum of Glan-Thompson-type prism polarizers
Hongxia Li1;2, Jiyang Fan3, Fufang Su4, Fuquan Wu4, Shining Zhu2**
1 Department of Applied Physics, [Nanjing University of Science and Technology], Nanjing 210094, China
2 Department of Physics, [Nanjing University], Nanjing 210093, China
3 Department of Physics, [Southeast University], Nanjing 211189, China
4 Laser Research Institute, [Qufu Normal University], Qufu 273165, China

Chin. Opt. Lett., 2010, 08(04): pp.428-430-3

DOI:10.3788/COL20100804.0428
Topic:Optical devices
Keywords(OCIS Code): 230.5440  230.5480  260.3160  

Abstract
We analyze the random disturbance in the transmission of light through a spinning Glan-Thompsontype prism polarizer. The disturbance makes the dependence of the transmission on the rotation angle significantly deviates from the Malus cosine-squared law and severely spoils the output light quality. Slight vibration of the polarizer as it rotates combing the multi-beam-interference effect raises the disturbance. Further analysis reveals the sensitive dependence of the disturbance on the composing material of the prism gap, and the appropriate selection of such material can make the disturbance minimize to very desirable levels. The model results show quite good agreement with experiments.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (312 KB)

Share:


Received:2009/8/10
Accepted:
Posted online:

Get Citation: Hongxia Li, Jiyang Fan, Fufang Su, Fuquan Wu, Shining Zhu**, "Suppressing the disturbance in the transmission spectrum of Glan-Thompson-type prism polarizers," Chin. Opt. Lett. 08(04), 428-430-3(2010)

Note: This work was supported by the Nanjing University of Science and Technology Scientific Research & Development and Start-Up Foundations (Nos. AB96230 and AB41897). Partial support was also from the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University (No. 4007021037).



References

1. T. Wang, S. Lan, J. Jiang, and T. Liu, Chin. Opt. Lett. 6, 812 (2008).

2. Q. Gong, C. Fan, F. Zhang, and J. Yao, Chin. Opt. Lett. 6, 905 (2008).

3. J. Q. Peterson, G. L. Jensen, J. A. Kristl, and J. A. Shaw, Proc. SPIE 4133, 292 (2000).

4. D. E. Aspnes, J. Opt. Soc. Am. A 21, 403 (2004).

5. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, Appl. Opt. 44, 1387 (2005).

6. W.-C. Huang, M.-S. Tsai, C.-R. Wang, I.-M. Jiang, and W.-H. Cheng, Appl. Opt. 46, 3493 (2007).

7. M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, J. Appl. Phys. 101, 014319 (2007).

8. Y. Kraftmakher, Eur. J. Phys. 30, 271 (2009).

9. H. Zhu, L. Song, J. Chen, H. Gao, R. Li, and Z. Xu, Opt. Commun. 245, 1 (2005).

10. J. Y. Fan, H. X. Li, and F. Q. Wu, Opt. Commun. 281, 197 (2008).

11. G. R. Fowles, Introduction to Modern Optics (Dover Publications, New York, 1989).

12. R. Appel, C. D. Dyer, and J. N. Lockwood, Appl. Opt. 41, 2470 (2002).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387