2018-07-23 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 03 , Vol. 10 , 2012    10.3788/COL201210.031401

Mechanism of refrigeration cycle on laser cooling of solids
Youhua Jia1, 2, Biao Zhong2, Jianping Yin2
1 Science College, [Shanghai Second Polytechnic University], Shanghai 201209, China
2 State Key Laboratory of Precision Spectroscopy, [East China Normal University], Shanghai 200062, China

Chin. Opt. Lett., 2012, 10(03): pp.031401

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3320  160.2540  300.2530  

A simple model is developed to study the laser cooling of solids. The condition of laser cooling of a solid is developed. By using some parameters of the Yb3+ ion, which is most widely used in laser cooling, we then calculate the cooling power and the cooling efficiency. In order to make a more precise analysis, the effect of fluorescent reabsorption, which is unavoidable in the cooling process, is discussed using the random walk model. Taking Tm3+ ion as an example, we derive the average number of absorption events and determine the change in quantum efficiency due to reabsorption. Finally, we obtain the red-shift of the fluorescent wavelength and the requirement of sample dimension.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (391 KB)


Posted online:2011/11/18

Get Citation: Youhua Jia, , Biao Zhong, Jianping Yin, "Mechanism of refrigeration cycle on laser cooling of solids," Chin. Opt. Lett. 10(03), 031401(2012)

Note: This work was supported by the National Natural Science Foundation of China (No. 10974055), the 2009 Shanghai Universities Select and Train Outstanding Young Teachers in Special Funds for Scientific Research (No. B50YQ309001), and the Shanghai Second Polytechnic University Fund (No. A20XQD20907).


1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).

2. X. Luo, M. D. Eisaman, and T. R. Gosnell, Opt. Lett. 23, 639 (1998).

3. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, Phys. Rev. Lett. 85, 3600 (2000).

4. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, J. Opt. Soc. Am. B 20, 1066 (2003).

5. A. Rayner, N. R. Heckenberg, and H. R. Dunlop, J. Opt. Soc. Am. B 20, 1037 (2003).

6. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 103 (2001).

7. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).

8. S. R. Bowman and C. E. Mungan, Appl. Phys. B 71, 807 (2000).

9. A. Mendioroz, J. Ferna’ndez, M. Voda, M. Al-Saleh, and R. Balda, Opt. Lett. 27, 1525 (2002).

10. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, J. Appl. Phys. 90, 4815 (2001).

11. T. R. Gosnell, Opt. Lett. 24, 1041 (1999).

12. G. Lamouche, P. Lavallard, R. Suris, and R. Grousson, J. Appl. Phys. 84, 509 (1998).

13. B. Heeg, P. A. DeBarber, and G. Rumbles, Appl. Opt. 44, 3117 (2005).

14. B. Heeg and G. Rumbles, J. Appl. Phys. 93, 1966 (2003).

15. G. S. Maciel, N. Rakov, C. B. Araujo, and Y. Messaddeq, J. Opt. Soc. Am. B 16, 1995 (1999).

16. C. Li, S. Xu, R. Ye, S. Zhao, D. Deng, and S. Zhuang, Chin. Opt. Lett. 8, 66 (2010).

17. M. Wang, G. Wang, L. Yi, S. Li, L. Hu, and J. Zhang, Chin. Opt. Lett. 8, 78 (2010).

18. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, J. Appl. Phys. 86, 6489 (1999).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387