2018-01-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 10 , 2012    10.3788/COL201210.100603


Temperature dependence of the PER in PM-PCF coil
Hong Zhao, Meng Chen, Gang Li
Institute of Laser Engineering, [Beijing University of Technology], Beijing 100021, China

Chin. Opt. Lett., 2012, 10(10): pp.100603

DOI:10.3788/COL201210.100603
Topic:Fiber optics and optical communications
Keywords(OCIS Code): 060.2310  060.2340  060.2270  

Abstract
A piece of domestic polarization-maintaining photonic crystal fiber (PM-PCF, 964 m in length) is made into a fiber coil, and its polarization extinction ratio (PER) is measured in a temperature range of –45–80 oC before and after PM-PCF is wound and solidified. A fiber coil made of commercial panda PM fiber (PMF) is also fabricated and measured for comparison. Our experiments show that the PER variation of the PM-PCF coil (2.25 dB) is far smaller than that of the panda PMF coil (10 dB) in the whole temperature range because PM-PCF is intrinsically insensitive to the temperature variation and stress in the fiber coil induced by the winding and solidification process. This characteristic is important for the real application of PM-PCFs in temperature-insensitive fiber interferometers, fiber sensors, and optical fiber gyroscopes.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (243 KB)

Share:


Received:2012/2/14
Accepted:2012/4/13
Posted online:2012/8/3

Get Citation: Hong Zhao, Meng Chen, Gang Li, "Temperature dependence of the PER in PM-PCF coil," Chin. Opt. Lett. 10(10), 100603(2012)

Note:



References

1. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A Birks, and P. St. J. Russell, Opt. Lett. 25, 1325 (2000).

2. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, Opt. Express 9, 676 (2001).

3. J. U. Kang and D.-H. Kim, in Proceedings of CLEOPR2007 MD1 1 (2007).

4. D.-H. Kim and J. Kang, Opt. Express 12, 4490 (2004).

5. B. Dong, J. Hao, Z. Xu, C.-Y. Liaw, Y. S. Meng, and Z. Cai, Appl. Opt. 49, 2630 (2010).

6. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. Khijwania, Appl. Opt. 47, 2835 (2008).

7. B. Dong, D.-P. Zhou, and W. Li, J. Lightwave Technol. 28, 1011 (2010).

8. J. Tawney, F. Hakimi, R. L. Willig, J. Alonzo, R. T. Bise, F. DiMarcello, E. M. Monberg, T. Stockert, and D. J. Trevor, in Proceedings of Optical Fiber Sensors 2006 ME8 (2006).

9. C. Li, C. Zhang, N. Song, and H. Xu, Chin. Opt. Lett. 9, 020604 (2011).

10. C. Xu, Y. Yang, W. Duan, and W. Yang, J. Beijing University of Aeronautics and Astronautics (in Chinese) 36, 753 (2010).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387