2018-02-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue s1 , Vol. 11 , 2013    10.3788/COL201311.S10702

Laser induced damage threshold testing of DUV optical substrates
Wenyuan Deng, Chunshui Jin
[Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences], State Key Library of Applied Optics, Changchun 130033, China

Chin. Opt. Lett., 2013, 11(s1): pp.S10702

Topic:Laser resistance coatings
Keywords(OCIS Code): 140.3330  310.0310  

Laser induced damage threshold (LIDT) testing is the effective methods to research the lifetime of optical elements. According to ISO 11254 standards, a LIDT testing system of ArF excimer laser is established. The laser beam size on the sample surface can be varied from 0.3 to 0.6 mm in diameter. The maximum laser energy density is larger than 4.5 J/cm2. Besides the Nomarski microscope, He-Ne scattering is used and demonstrated as an effective and reliable method for the on-line monitoring of laser damage. The uncertainty of LIDT results and the main effecting factors are analyzed. The laser induced damage of fused silica substrates with different absorptions and CaF2 substrates with different absorptions are investigated in 1-on-1 mode, respectively. The roles of absorption on the LIDT results of the two kind substrates are discussed.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (405 KB)


Posted online:2013/5/10

Get Citation: Wenyuan Deng, Chunshui Jin, "Laser induced damage threshold testing of DUV optical substrates," Chin. Opt. Lett. 11(s1), S10702(2013)

Note: This work was supported by the National Science and Technology Major Project and the National Natural Science Foundation of China (No. 61178020).


1. D. Basting and G. Marowsky, Excimer laser technology (Springer, Berlin, 2005).

2. K. Kakizaki, Y. Sasaki, and T. Inoue, Rev. Sci. Instrum. 77, 035109 (2006).

3. V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville, A. K. Bates, and C. K. Van Peski, Opt. Lett. 24, 58 (1999).

4. A. Duparre, R. Thielsch, N. Kaiser, S. Jakobs, K. R. Mann, and E. Eva, Proc. SPIE 3334, 1048 (1998).

5. V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. K. Van Peski, Proc. SPIE 3578, 2 (1998).

6. K. R. Mann and E. Eva, Proc. SPIE 3334, 1055 (1998).

7. K. R. Mann and H. Gerhardt, Proc. SPIE 1503, 176 (1991).

8. X. Liu, D. Li, Y. Zhao, X. Li, X. Ling, and J. Shao, Chin. Opt. Lett. 8, 41 (2010).

9. J. Hue, J. Dijon, and P. Lyan, Proc. SPIE 2714, 102(1996).

10. L. Sheehan, S. Schwartz, C. Battersby, R. Dickson, R. Jennings, J. Kimmons, M. Kozlowski, S. Maricle, R. Mouser, M. Runkel, and C. Weinzapfel, Proc. SPIE 3578, 302 (1998).

11. M. W. Hooker, M. E. Thomas, S. A. Wise, and N. D. Tappan, NASA Technical Memorandum 4639 (1995).

12. R. Thielsch, J. Heber, A. Duparre, N. Kaiser, K. R. Mann, and E. Eva, Proc. SPIE 3578, 97 (1998).

13. J. Dijon, E. Quesnel, C. Pelle, and R. Thielsch, Proc. SPIE 3578, 54 (1998).

14. A. Burkert, Ch. Muehlig, W. Triebel, D. Keutel, U. Natural, L. Parthier, S. Gliech, S. Schroeder, and A. Duparre, Proc. SPIE 5878, 58780E (2005).

15. H. Johansen and G. Kastner, J. Mater. Sci. 33, 3839 (1998).

16. M. Bauer, M. Bischoff, S. Jukresch, T. H¨ulsenbusch, A. Matern, A. G¨otler, R. W. Stark, A. Chuvilin, and U. Kaiser, Opt. Express 17, 8253 (2009).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387