2018-02-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue s1 , Vol. 11 , 2013    10.3788/COL201311.S10703

Mechanisms of near-ultraviolet, nanosecond-pulse–laser damage in HfO2/SiO2-based multilayer coatings
S. Papernov
Laboratory for Laser Energetics, [University of Rochester], Rochester, NY 14623-1299, USA

Chin. Opt. Lett., 2013, 11(s1): pp.S10703

Topic:Laser resistance coatings
Keywords(OCIS Code): 140.0140  310.0310  160.0160  

The possible role of metal clusters and electronic defects in the near-ultraviolet, nanosecond-pulse–laser damage in HfO2/SiO2-pair-based coatings is analyzed using experimental results on absorption and damage in HfO2 monolayers with and without artificially introduced Hf nanoscale absorbers. These studies reveal a damage mechanism specific to HfO2/SiO2 pair combination comprised of a high-melting-point material (HfO2), where absorption starts, and a lower-melting-point material (SiO2), where absorption can be initiated upon reaching the critical temperature. Based on this analysis we discuss possible modifications to coating designs and desirable properties of high- and low-index materials that might lead to improve nanosecond, near-ultraviolet laser-damage performance.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1663 KB)


Posted online:2012/5/10

Get Citation: S. Papernov, "Mechanisms of near-ultraviolet, nanosecond-pulse–laser damage in HfO2/SiO2-based multilayer coatings," Chin. Opt. Lett. 11(s1), S10703(2013)

Note: This work was supported by the U.S. Department of Energy (DOE) Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this letter.


1. S. Papernov and A. W. Schmid, J. Appl. Phys. 82, 5422 (1997).

2. A. S. Foster, F. L.Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B 65, 174117 (2002).

3. C. J. Stolz and F. Y. Genin, Optical Interference Coatings N. Kaiser and H. K. Pulker, (eds.) (Springer, Berlin, 2003) p. 309.

4. S. Papernov, A. W. Schmid, A. L. Rigatti, J. B. Oliver, and J. D. Howe, Proc. SPIE 5991, 59911D (2005).

5. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).

6. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, Phys. Rev. B 73, 045424 (2006).

7. P. T. Murray and E. Shin, Proc. SPIE 7404, 74040F (2009).

8. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, J. Appl. Phys. 109, 113106 (2011).

9. W. Gerhard and H. Oechsner, Z. Phys. B 22, 41 (1975).

10. J. Bude, G. M. Guss, M. Matthews, and M. L. Spaeth, Proc. SPIE 6720, 672009 (2007).

11. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, Proc. SPIE 7132, 71320J (2008).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387