2017-09-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 04 , Vol. 14 , 2016    10.3788/COL201614.041402

Efficiency-enhanced picosecond mid-infrared optical parametric downconversion based on a cascaded optical superlattice
Shifeng Li1, Panpan Ju1, Yanhua Liu2, Xudong Jiang1, Rui Ni1, Gang Zhao1, Xinjie Lv1, and Shining Zhu1
1 National Laboratory of Solid State Microstructures, [Nanjing University], Nanjing 21 0093, China
2 College of Physics, Optoelectronics and Energy &
Collaborative Innovation Center of Suzhou Nano Science and Technology, [Soochow University], Suzhou 2 15006, China

Chin. Opt. Lett., 2016, 14(04): pp.041402

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.0140  190.0190  

We demonstrate an efficiency-enhanced picosecond (ps) mid-infrared radiation via optical parametric downconversion. Based on a cascaded periodically poled MgO-doped stoichiometric lithium tantalate crystal (MgO:sPPLT), a tandem optical parametric oscillation-optical parametric amplification (OPO-OPA) process is achieved. Compared with a single OPO process, the conversion efficiency obtains an enhancement of 71%.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (308 KB)


Posted online:2016/4/1

Get Citation: Shifeng Li, Panpan Ju, Yanhua Liu, Xudong Jiang, Rui Ni, Gang Zhao, Xinjie Lv, and Shining Zhu, "Efficiency-enhanced picosecond mid-infrared optical parametric downconversion based on a cascaded optical superlattice," Chin. Opt. Lett. 14(04), 041402(2016)

Note: This work was supported by the International Science and Technology Cooperation Program of China (ISTCP) (No. 2014DFT50230), the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ030127), and the National Natural Science Foundation of China (No. 61405133).


1. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science322, 1857 (2008).

2. M. Jurna, J. P. Korterik, and H. L. Offerhaus, Appl. Phys. Lett.89, 251116 (2006).

3. W. Dai, Y. Song, B. Xu, A. Martinez, S. Yamashita, M. Hu, and C. Wang, Chin. Opt. Lett.12, 111402 (2014).

4. O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, Opt. Lett.35, 3210 (2010).

5. G. Zhao, P. P. Ju, X. J. Lu, Z. H. Shi, Y. T. Huang, and X. Y. Liang, Acta Sin. Quant. Opt.20, 172 (2014).

6. K. Z. Han, J. Ning, J. L. He, J. Hou, B. T. Zhang, and Z. W. Wang, Chin. Phys. Lett.32, 054203 (2015).

7. S. C. Kumar, and M. Ebrahim-Zadeh, Opt. Express19, 26660 (2011).

8. W. Tian, J. Zhu, Z. Wang, and Z. Wei, Chin. Opt. Lett.13, 011901 (2015).

9. J. M. Fraser, and C. Ventalon, Appl. Opt.45, 4109 (2006).

10. A. Smith, http://www.as-photonics.com/snlo.

11. K. J. McEwan, and J. A. C. Terry, Opt. Commun.182, 423 (2000).

12. H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, J. Phys. Condens. Matter16, 8465 (2004).

13. Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S.N. Zhu, Opt. Express19, 17500 (2011).

14. Y. H. Liu, X. J. Lv, Z. D. Xie, X.P. Hu, Y. Yuan, J. Lu, L.N. Zhao, G. Zhao, and S.N. Zhu, Appl. Phys. B106, 267 (2012).

15. X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett.85, 188 (2004).

16. W. L. Weng, Y. W. Liu, and X. Q. Zhang, Chin. Phys. Lett.25, 4303 (2008).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387