2019-02-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 14 , 2016    10.3788/COL201614.061301

Multichannel polarization-entangled photon-pair source for entanglement distribution
Mengning Hu, Yuping Chen, Guangzhen Li, and Xianfeng Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, [Shanghai Jiao Tong University], Shanghai 200240, China

Chin. Opt. Lett., 2016, 14(06): pp.061301

Topic:Integrated optics
Keywords(OCIS Code): 130.3730  130.7405  190.0190  

A multichannel polarization-entangled photon-pair source in an MgO-doped periodically poled lithium niobate (MgO:PPLN) waveguide is proposed. Based on type I quasi-phase-matched spontaneous parametric down conversion in a single MgO: PPLN waveguide placed inside a Sagnac interferometer and pumped by monochromatic light, a source capable of supporting tens to hundreds of channels of polarization-entangled photon pairs in fiber communication bands simultaneously can be achieved. An inherent channel switch of this source is investigated, which will be significant for future entanglement distribution networks.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (456 KB)


Posted online:2016/5/20

Get Citation: Mengning Hu, Yuping Chen, Guangzhen Li, and Xianfeng Chen, "Multichannel polarization-entangled photon-pair source for entanglement distribution," Chin. Opt. Lett. 14(06), 061301(2016)

Note: This work was supported by the National Natural Science Fund of China (Nos. 11574208, 10874120, and 60407006) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.


1. Z. Y. Ou, and L. Mandel, Phys. Rev. Lett.61, 50 (1988).

2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett.70, 1895 (1993).

3. C. H. Bennett, and S. J. Wiesner, Phys. Rev. Lett.69, 2881 (1992).

4. A. K. Ekert, Phys. Rev. Lett.67, 661 (1991).

5. X. Song, H. Li, C. Zhang, D. Wang, S. Wang, Z. Yin, W. Chen, and Z. Han, Chin. Opt. Lett.13, 012701 (2015).

6. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express16, 14512 (2008).

7. S. Gao, and C. Yang, Opt. Lett.32, 2653 (2007).

8. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Express16, 22099 (2008).

9. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, Opt. Fiber. Technol.16, 225 (2010).

10. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev.127, 1918 (1962).

11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Review. Lett.75, 4337 (1995).

12. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, Opt. Lett.27, 1046 (2002).

13. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, Opt. Lett.24, 1157 (1999).

14. C. Q. Xu, H. Okayama, and M. Kawahara, Appl. Phys. Lett, 63, 3559 (1993).

15. M. Xia, J. Li, Y. Hu, W. Sheng, D. Gao, W. Pang, and X. Zheng, Chin. Opt. Lett.13, 113001 (2015).

16. A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A77, 043834 (2008).

17. F. K?nig, E. J. Mason, F. N. C. Wong, and M. A. Albota, Phys. Rev. A71, 033805 (2005).

18. X. Leijtens, B. Kuhlow, and M. Smit, Arrayed waveguide gratings (Springer, 2006).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备15018463号-7 公安备案沪公网安备 31011402005522号