2018-06-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 06 , Vol. 14 , 2016    10.3788/COL201614.062502

Effectiveness of inserting an InGaN interlayer to improve the performances of InGaN-based blue-violet laser diodes
Xiang Li, Degang Zhao
State Key Laboratory on Integrated Optoelectronics, [Institute of Semiconductors], Chinese Academy of Sciences, Beijing 100083, China

Chin. Opt. Lett., 2016, 14(06): pp.062502

Keywords(OCIS Code): 250.0250  250.5960  

Electron leakage still needs to be solved for InGaN-based blue-violet laser diodes (LDs), despite the presence of the electron blocking layer (EBL). To reduce further electron leakage, a new structure of InGaN-based LDs with an InGaN interlayer between the EBL and p-type waveguide layer is designed. The optical and electrical characteristics of these LDs are simulated, and it is found that the adjusted energy band profile in the new structure can improve carrier injection and enhance the effective energy barrier against electron leakage when the In composition of the InGaN interlayer is properly chosen. As a result, the device performances of the LDs are improved.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (648 KB)


Posted online:2016/5/20

Get Citation: Xiang Li, Degang Zhao, "Effectiveness of inserting an InGaN interlayer to improve the performances of InGaN-based blue-violet laser diodes," Chin. Opt. Lett. 14(06), 062502(2016)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Science Fund for Distinguished Young Scholars (No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province (No. BK20130362).


1. L. C. Le, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, J. Yang, X. G. He, X. J. Li, J. P. Liu, J. P. Liu, J. J. Zhu, S. M. Zhang, and H. Yang, Opt. Express22, 10 (2014).

2. H. Lü, Y. Lü, Q. Wang, J. Li, Z. Feng, X. Xu, and Z. Ji, Chin. Opt. Lett.14, 042302 (2016).

3. L. Naixin, W. Junxi, Y. Jianchang, L. Zhe, R. Jun, and L. Jinmin, J. Semicond.30, 113003 (2009).

4. J. S. Kang, J.-A. Yoon, S. Il Yoo, J. W. Kim, B. M. Lee, H. H. Yu, C.-B. Moon, and W. Y. Kim, Chin. Opt. Lett.13, 032301 (2015).

5. L. Deyao, H. Yongzhen, Z. Shuming, C. Ming, Y. Xiaojun, Z. Jianjun, Z. Degang, C. Lianghui, Y. Hui, and L. Junwu, J. Semicond.27, 499 (2006).

6. F. Binglei, L. Naixin, L. Zhe, L. Jinmin, and W. Junxi, J. Semicond.35, 114007 (2014).

7. X. Ji, T. Wei, F. Yang, H. Lu, X. Wei, P. Ma, X. Yi, J. Wang, Y. Zeng, G. Wang, and J. Li, Opt. Express22, A1001 (2014).

8. Y.-K. Kuo, J.-Y. Chang, and M.-C. Tsai, Opt. Lett.35, 3285 (2010).

9. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, Appl. Phys. Lett.94, 231123 (2009).

10. S.-N. Lee, S. Y. Cho, H. Y. Ryu, J. K. Son, H. S. Paek, T. Sakong, T. Jang, K. K. Choi, K. H. Ha, M. H. Yang, O. H. Nam, Y. Park, and E. Yoon, Appl. Phys. Lett.88, 111101 (2006).

11. L. Na, Y. Xiaoyan, L. Meng, G. Enqing, F. Xiangxu, S. Zhao, J. Xiaoli, W. Xuecheng, L. Hongxi, L. Zhiqiang, Z. Ning, W. Junxi, and L. Jinmin, J. Semicond.35, 024010 (2014).

12. S. Choi, M.-H. Ji, J. Kim, H. J. Kim, M. Satter, P. D. Yoder, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, Appl. Phys. Lett.101, 161110 (2012).

13. N. Zhang, Z. Liu, T. Wei, L. Zhang, X. Wei, X. Wang, H. Lu, J. Li, and J. Wang, Appl. Phys. Lett.100, 053504 (2012).

14. Z. Zheng, Z. Chen, Y. Chen, H. Wu, S. Huang, B. Fan, Z. Wu, G. Wang, and H. Jiang, Appl. Phys. Lett.102, 241108 (2013).

15. W. Yang, D. Li, N. Liu, Z. Chen, L. Wang, L. Liu, L. Li, C. Wan, W. Chen, X. Hu, and W. Du, Appl. Phys. Lett.100, 031105 (2012).

16. L. Yan, L. Zhiqiang, H. Miao, Y. Xiaoyan, W. Junxi, L. Jinmin, Z. Shuwen, and L. Shuti, J. Semicond.36, 054006 (2015).

17. V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. Lett.80, 1204 (2002).

18. M.-X. Feng, J.-P. Liu, S.-M. Zhang, D.-S. Jiang, Z.-C. Li, D.-Y. Li, L.-Q. Zhang, F. Wang, H. Wang, and H. Yang, IEEE J. Sel. Topics Quantum Electron.19, 1500705 (2013).

19. M. X. Feng, J. P. Liu, S. M. Zhang, D. S. Jiang, Z. C. Li, K. Zhou, D. Y. Li, L. Q. Zhang, F. Wang, H. Wang, P. Chen, Z. S. Liu, D. G. Zhao, Q. Sun, and H. Yang, Appl. Phys. Lett.103, 043508 (2013).

20. C.-Y. Huang, Y.-D. Lin, A. Tyagi, A. Chakraborty, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, J. Appl. Phys.107, 023101 (2010).

21. L. Le, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, J. Yang, X. Li, X. He, J. Liu, S. Zhang, and H. Yang, J. Vac. Sci. Technol. B33, 011209 (2015).

22. Z.-H. Zhang, S. T. Tan, Z. Kyaw, Y. Ji, W. Liu, Z. Ju, N. Hasanov, X. W. Sun, and H. V. Demir, Appl. Phys. Lett.102, 193508 (2013).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387