2018-03-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 14 , 2016    10.3788/COL201614.101102

Optical readout method based on time-discrete modulation for micro-cantilever array sensing
Xuhong Chu1, Liquan Dong1, Yuejin Zhao1, Xiaomei Yu2, and Yun Feng1
1 Beijing Key Lab. for Precision Optoelectronic Measurement Instrument and Technology, School of Optoelectronics, [Beijing Institute of Technology], Beijing 1 00081 , China
2 Institute of Microelectronics, [Peking University], Beijing 100087, China

Chin. Opt. Lett., 2016, 14(10): pp.101102

Topic:Imaging systems
Keywords(OCIS Code): 110.3080  110.2970  040.6808  100.2550  

Noise and the resonance characteristics of the focal plane array (FPA) are the most important factors that affect the performance of the optical readout infrared (IR) FPA imaging system. This Letter presents a time-discrete modulation technology that eliminates the background and restrain noise, which effectively improves the image quality of the optical readout IR FPA imaging system. The comparative experiments show that this technology can reduce the noise equivalent temperature difference greatly and make the images sharper. Moreover, when the imaging system is influenced by the environment vibration, the images obtained from the imaging system with time-discrete modulation restore twice as fast as without time-discrete modulation.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (499 KB)


Posted online:2016/9/19

Get Citation: Xuhong Chu, Liquan Dong, Yuejin Zhao, Xiaomei Yu, and Yun Feng, "Optical readout method based on time-discrete modulation for micro-cantilever array sensing," Chin. Opt. Lett. 14(10), 101102(2016)

Note: This work was supported by the National Natural Science Foundation of China under Grant Nos. 61377109 and 61301190.


1. P. I. Oden, P. G. Datskos, T. Thundar, and R. J. Warmack, Appl. Phys. Lett. 69, 3277 (1996).

2. S. Zhang, X. Hu, Y. Liao, F. He, C. Liu, and Y. Cheng, Chin. Opt. Lett. 11, 033101 (2013).

3. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).

4. J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, Appl. Phys. Lett. 71, 306 (1997).

5. W. Qian, Q. Chen, and G. Gu, Chin. Opt. Lett. 9, 051003 (2011).

6. P. Jia, and D. Wang, Chin. Opt. Lett. 11, 040601 (2013).

7. M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, Proc. SPIE 7298, 72980I (2009).

8. Z. Duan, Q. Zhang, X. Wu, L. Pan, D. Chen, W. Wang, and Z. Guo, Chin. Phys. Lett. 20, 2130 (2003).

9. J. Gao, Q. C. Zhang, D. P. Chen, B. B. Jiao, H. T. Shi, J. Qian, T. Cheng, and X. P. Wu, Infrared Millimeter Waves 28, 249 (2009).

10. M. Liu, Y. Zhao, L. Dong, X. Yu, X. Liu, M. Hui, J. You, and Y. Yi, Opt. Lett. 34, 3547 (2009).

11. X. Chu, Y. Zhao, L. Dong, Q. Jia, X. Yu, X. Liu, C. Gong, and Y. Jin, Opt. Express 20, 9516 (2012).

12. J. Zhao, Proc. SPIE 5783, 506 (2005).

13. H. Torun, and H. Urey, Proc. SPIE 5957, 59570O (2005).

14. J. P. Salerno, Proc. SPIE 6542, 65421D (2007).

15. X. Wang, S. Ma, and X. Yu, Appl. Phys. Lett. 91, 054109 (2007).

16. Y. Jin, X. Yu, Y. Zheng, Y. Zhao, X. Liu, and L. Dong, Proc. SPIE 8191, 819102 (2011).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387