2018-03-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 14 , 2016    10.3788/COL201614.101301

Analysis of an integrated tunable spectrometer for the short to mid-infrared range based on a ring resonator
Jie Huang1, Junbo Yang1;2, Hailiang Zhang1, Hongqing Wang1, Wenjun Wu1, DingBo Chen1, and Shengli Chang1
1 Center of Material Science, [National University of Defense Technology], Changsha 41 0073, China
2 State Key Laboratory on Advanced Optical Communication Systems and Networks, [Peking University], Beijing 100871, China

Chin. Opt. Lett., 2016, 14(10): pp.101301

Topic:Integrated optics
Keywords(OCIS Code): 130.7408  130.3120  130.3990  140.4780  

An integrated, tunable spectrometer based on a silicon-on-sapphire platform is designed at wavelengths of 2.29–2.35 μm. Its pivotal component is a 4.7 μm-radius ring resonator on a graphene monolayer. Its full width at half-maximum and free spectral range are ~1.5 and ~45 nm, respectively, as found through a numerical simulation and theoretical computation. Sixteen characteristic peaks are obtained by tuning the Fermi level of graphene. The gap between the ring and waveguides is increased by 0.5 μm to increase the resolution, and though this can drastically reduce the transmission rate, an upper sapphire layer maintains light to the drop port.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (516 KB)


Posted online:2016/9/2

Get Citation: Jie Huang, Junbo Yang, Hailiang Zhang, Hongqing Wang, Wenjun Wu, DingBo Chen, and Shengli Chang, "Analysis of an integrated tunable spectrometer for the short to mid-infrared range based on a ring resonator," Chin. Opt. Lett. 14(10), 101301(2016)

Note: This work was supported by the Advanced Research Program of National University of Defense Technology (Nos. JC13-02-15 and JC13-02-13), the Natural Science Foundation of Hunan Province (Nos. 13JJ4008 and 13JJ3001), and the Program for New Century Excellent Talents in University (No. NCET-12-0142).


1. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. S. Hosseini, and A. Adibi, J. Nanophoton. 3, 031001 (2009).

2. H. I. Hsu, P. Wu, and C. Huang, Chin. Opt. Lett. 14, 030501 (2016).

3. K. Kodate, Y. Komai, and K. Okamoto, J. Opt. A-Pure Appl. Op. 10, 44011 (2008).

4. T. Fukazawa, F. Ohno, and T. Baba, Jpn. J. Appl. Phys. 43, L673 (2004).

5. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. V. Campenhout, G. Z. Mashanovich, and G. Roelkens, Opt. Express 21, 11659 (2013).

6. A. Malik, M. Muneeb, S. Pathak, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, IEEE Photon. Technol. Lett. 25, 1805 (2013).

7. M. Muneeb, A. Vasiliev, A. Ruocco, A. Malik, H. Chen, M. Nedeljkovic, J. S. Penades, L. Cerutti, J. B. Rodriguez, G. Z. Mashanovich, M. K. Smit, E. Tourni, and G. Roelkens, Opt. Express 24, 9465 (2016).

8. R. Wang, M. Muneeb, S. Sprengel, G. Boehm, A. Malik, R. Baets, M. Amann, and G. Roelkens, Opt. Express 24, 8480 (2016).

9. A. Malik, M. Muneeb, Y. Shimura, J. V. Campenhout, R. Loo, and G. Roelkens, Appl. Phys. Lett. 103, 161119 (2013).

10. Q. Zhou, J. Pang, X. Li, K. Ni, and R. Tian, Chin. Opt. Lett. 13, 110501 (2015).

11. V. Velasco, P. Cheben, P. J. Bock, A. Delage, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D. Xu, M. Florjańczyk, and M. Vachon, Opt. Lett. 38, 706 (2013).

12. M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delage, P. Cheben, and G. Z. Mashanovich, IEEE Photon. Technol. Lett. 7, 1 (2015).

13. Z. Xia, A. A. Eftekha, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, Opt. Express 19, 12356 (2011).

14. A. Malik, S. Dwivedi, L. V. Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. V. Campenhout, W. Vanherle, T. V. Opstal, R. Loo, and G. Roelkens, Opt. Express 22, 28479 (2014).

15. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, in Conference on Lasers and Electro-Optics , 1 (2009).

16. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008).

17. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008).

18. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).

19. A. Yariv, Electron. Lett. 36, 321 (2000).

20. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, and H. A. Haus, IEEE J. Quantum Electron. 35, 1322 (1999).

21. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Nano Lett. 13, 1257 (2013).

22. L. A. Falkovsky, and S. S. Pershoguba, Phys. Rev. B 76, 153410 (2007).

23. L. A. Falkovsky, and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).

24. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, Laser Sci. 1505, 03016 (2015).

25. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

26. S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, Opt. Express 22, 26173 (2014).

27. A. Vakil, and N. Engheta, Science 332, 1291 (2011).

28. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. L. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, Nano Lett. 12, 3711 (2012).

29. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387