2018-03-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 10 , Vol. 14 , 2016    10.3788/COL201614.102304

Coverage of coherent output states in parallel-coupled dual-racetrack microresonators
Wei Jiang1;2;3, Yating Zhou2;3;4
1 College of Engineering and Applied Sciences &
National Laboratory of Solid State Microstructures, [Nanjing University], Nanjing 21 0093, China
2 Department of Electrical and Computer Engineering, [Rutgers University], Piscataway, New Jersey 08854, USA
3 Institute for Advanced Materials, Devices, and Nanotechnology, [Rutgers University], Piscataway, New Jersey 08854, USA
4 School of Mathematics and Physics &
Chemical Engineering, [Changzhou Institute of Technology], Changzhou 213002, China

Chin. Opt. Lett., 2016, 14(10): pp.102304

Topic:Optical devices
Keywords(OCIS Code): 230.5750  250.7360  250.4745  

Parallel-coupled dual-racetrack silicon microresonators can potentially be used for quadrature amplitude modulation. We analyze the evolution of the coverage of coherent output states of devices with varying device parameters. As the coupling constant increases, the coverage of coherent states initially improves then degrades, which is unexpected based on a prior preference for overcoupling. Increasing the quality factor generally improves the coverage. The influence of the refractive index modulation is found to saturate after reaching a certain level. Analytic formulas are developed to provide insight into the coverage evolution. These results are fairly robust against a small asymmetry of device parameters.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (436 KB)


Posted online:2016/9/30

Get Citation: Wei Jiang, Yating Zhou, "Coverage of coherent output states in parallel-coupled dual-racetrack microresonators," Chin. Opt. Lett. 14(10), 102304(2016)

Note: This work was supported in part by the Jiangsu Province Natural Science Foundation of China (No. BK20141168) and the Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents.


1. P. J. Winzer, and R.-J. Essiambre, J. Lightwave Technol. 24, 4711 (2006).

2. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).

3. C. Li, L. J. Zhou, and A. W. Poon, Opt. Express 15, 5069 (2007).

4. D. M. Gill, S. S. Patel, M. Rasras, K. Y. Tu, A. E. White, Y. K. Chen, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, IEEE J. Sel. Top. Quantum Electron. 16, 45 (2010).

5. Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, Chin. Opt. Lett. 11, 012501 (2013).

6. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, Opt. Express 20, 2507 (2012).

7. L. Zhang, J.-Y. Yang, Y. Li, M. Song, R. G. Beausoleil, and A. E. Willner, Opt. Lett. 33, 1428 (2008).

8. P. Dong, C. Xie, L. Chen, N. K. Fontaine, and Y.-K. Chen, Opt. Lett. 37, 1178 (2012).

9. R. A. Integlia, L. Yin, D. Ding, D. Z. Pan, D. M. Gill, and W. Jiang, Opt. Express 19, 14892 (2011).

10. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007).

11. W. Jiang, L. Gu, X. Chen, and R. T. Chen, Solid-State Electron. 51, 1278 (2007).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387