2017-12-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 14 , 2016    10.3788/COL201614.110201


Control of molecular excitation during the plasma generation of a femtosecond laser pulse
Quanjun Wang, Yanghua Zhang, Zhenhao Wang, Jingjie Ding, Zuoye Liu, and Bitao Hu
School of Nuclear Science and Technology, [Lanzhou University], Lanzhou 730000, China

Chin. Opt. Lett., 2016, 14(11): pp.110201

DOI:10.3788/COL201614.110201
Topic:Atomic and molecular physics
Keywords(OCIS Code): 020.2649  020.2070  300.6365  

Abstract
From a classical dynamic simulation, we find the kinetic energy of the electrons generated during laser plasma generation depends on the laser polarization and intensity. The electron kinetic energy reaches its maximum with a fixed laser intensity for circularly polarized laser pulse. The fluorescence spectra at 380.4 nm from N2 and 391.3 nm from N2+ are measured; these are generated by both the direct excitation and electron collision excitation. The electron collision excitation is determined by the electron energy and reaches the maximal with a circularly polarized pulse.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (348 KB)

Share:


Received:2016/6/7
Accepted:2016/8/26
Posted online:2016/10/17

Get Citation: Quanjun Wang, Yanghua Zhang, Zhenhao Wang, Jingjie Ding, Zuoye Liu, and Bitao Hu, "Control of molecular excitation during the plasma generation of a femtosecond laser pulse," Chin. Opt. Lett. 14(11), 110201(2016)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11504148 and 11135002) and the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2015-269 and lzujbky-2015-242).



References

1. R. Mathies, C. Brito Cruz, W. Pollard, and C. Shank, Science 240, 777 (1988).

2. M. Saes, C. Bressler, R. Abela, D. Grolimund, S. L. Johnson, P. A. Heimann, and M. Chergui, Phys. Rev. Lett. 90, 047403 (2003).

3. T. M. Clarke, F. C. Jamieson, and J. R. Durrant, J. Phys. Chem. C 113, 20934 (2009).

4. M. Chini, X. Wang, Y. Cheng, Y. Wu, D. Zhao, D. A. Telnov, S.-I. Chu, and Z. Chang, Sci. Rep. 3, 1105 (2013).

5. A. Gandman, L. Rybak, and Z. Amitay, Phys. Rev. Lett. 113, 043003 (2014).

6. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, Science 340, 716 (2013).

7. Z. Liu, C. Ott, S. M. Cavaletto, Z. Harman, C. H. Keitel, and T. Pfeifer, New J. Phys. 16, 093005 (2014).

8. Z. Liu, S. M. Cavaletto, C. Ott, K. Meyer, Y. Mi, Z. Harman, C. H. Keitel, and T. Pfeifer, Phys. Rev. Lett. 115, 033003 (2015).

9. Z. Hao, J. Zhang, Y. Li, X. Lu, X. Yuan, Z. Zheng, Z. Wang, W. Ling, and Z. Wei, Appl. Phys. B 80, 627 (2005).

10. W. Liu, Q. Luo, and S. L. Chin, Chin. Opt. Lett. 1, 56 (2003).

11. Y. Chen, S. Yu, R. Sun, C. Gong, L. Hua, X. Lai, W. Quan, and X. Liu, Chin. Phys. Lett. 33, 043301 (2016).

12. T. Zeng, H. Gao, X. Sun, and W. Liu, Chin. Opt. Lett. 13, 070008 (2015).

13. K. Kaneshima, K. Takeuchi, N. Ishii, and J. Itatani, High Power Laser Sci. Eng. 4, e17 (2016).

14. Z. Hao, J. Zhang, X. Lu, T. Xi, Y. Li, X. Yuan, Z. Zheng, Z. Wang, W. Ling, and Z. Wei, Opt. Lett. 14, 773 (2006).

15. A. Couairon, and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

16. L. Berg, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1663 (2007).

17. S. Yuan, S. L. Chin, and H. Zeng, Chin. Phys. B 24, 014208 (2015).

18. H. Liang, H. Sun, Y. Liu, Y. Tian, J. Ju, C. Wang, and J. Liu, Chin. Opt. Lett. 13, 033201 (2015).

19. Y. Wei, Y. Liu, T. Wang, N. Chen, J. Ju, Y. Liu, H. Sun, C. Wang, J. Liu, H. Lu, S. L. Chin, and R. Li, High Power Laser Sci. Eng. 4, e8 (2016).

20. C. Pasquini, J. Cortez, L. Silva, and F. B. Gonzaga, J. Brazil. Chem. Soc. 18, 463 (2007).

21. F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, Anal. Chem. 85, 640 (2012).

22. P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, Opt. Express 22, 29964 (2014).

23. B. Hu, Z. Liu, L. Li, S. Sun, P. Ding, X. Liu, Q. Liu, Z. Guo, and B. Ding, Laser Phys. Lett. 10, 075401 (2013).

24. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, Phys. Rev. Lett. 114, 063003 (2015).

25. B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, Phys. Rev. Lett. 106, 255002 (2011).

26. J. Kasparian, R. Sauerbrey, and S. L. Chin, Appl. Phys. B 71, 877 (2000).

27. J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, Phys. Rev. Lett. 116, 143007 (2016).

28. S. C. Rae, and K. Burnett, J. Phys. B: At. Mol. Opt. Phys. 26, 1509 (1993).

29. C. Ireland, and C. G. Morgan, J. Phys. D 6, 720 (1973).

30. S. L. Chin, Y. Liang, J. E. Decker, E. Jennifer, F. A. Ilkov, and M. V. Ammosov, J. Phys. B: At. Mol. Opt. Phys. 25, L249 (1992).

31. P. Bucksbaum, M. Bashkansky, R. Freeman, T. McIlrath, and L. DiMauro, Phys. Rev. Lett. 56, 2590 (1986).

32. P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989).

33. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, Chem. Phys. 360, 171 (2009).

34. H. L. Xu, Y. Cheng, S. L. Chin, and H. B. Sun, Laser Photon. Rev 9, 275 (2015).

35. B. R. Arnold, S. D. Roberson, and P. M. Pellegrino, Chem. Phys. 405, 9 (2012).

36. Y. Itilawa, J. Phys. Chem. Ref. Data 35, 31 (2006).

37. A. Becker, A. D. Bandrauk, and S. L. Chin, Chem. Phys. Lett. 343, 345 (2001).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387