2018-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 14 , 2016    10.3788/COL201614.111403

Three-dimensional catadioptric vision sensor using omnidirectional dot matrix projection
Fuqiang Zhou1, Xin Chen1, Haishu Tan2, and Xinghua Chai1
1 Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, [Beihang University], Beijing 1 001 91 , China
2 Department of Electronic Information Engineering, [Foshan University], Foshan 52 8000, China

Chin. Opt. Lett., 2016, 14(11): pp.111403

Topic:Lasers and laser optics
Keywords(OCIS Code): 140.3290  140.3560  150.0155  280.3420  

In order to solve the problem of low measurement accuracy caused by uneven imaging resolutions, we develop a three-dimensional catadioptric vision sensor using 20 to 100 lasers arranged in a circular array called omnidirectional dot maxtric projection (ODMP). Based on the imaging characteristic of the sensor, the ODMP can image the area with a high image resolution. The proposed sensor with ODMP can minimize the loss of the detail information by adjusting the projection density. In evaluating the performance of the sensor, real experiments show the designed sensor has high efficiency and high precision for the measurement of the inner surfaces of pipelines.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1280 KB)


Posted online:2016/11/10

Get Citation: Fuqiang Zhou, Xin Chen, Haishu Tan, and Xinghua Chai, "Three-dimensional catadioptric vision sensor using omnidirectional dot matrix projection," Chin. Opt. Lett. 14(11), 111403(2016)

Note: This work was supported by the National Natural Science Foundation of China (No. 61471123) and the Natural Science Foundation of Guangdong Province (No. 2015A030313639).


1. F. Zhou, B. Peng, Y. Cui, Y. Wang, and H. Tan, Opt. Laser Technol. 45, 1 (2013).

2. Z. Xiang, X. Dai, Y. Zhou, and X. Gong, Meas. Sci. Technol. 25, 085005 (2014).

3. C. Geyer, and K. Daniilidis, Int. J. Comput. Vis. 2, 766 (2003).

4. R. Swaminathan, M. Grossberg, and S. Nayar, Int. J. Comput. Vis. 66, 211 (2001).

5. D. Scaramuzza, A. Martinelli, and R. Siegwart, in Fourth IEEE International Conference on Computer Vision Systems 45 (2006).

6. C. Paniagua, L. Puig, and J. J. Guerrero, Sensors 13, 13903 (2013).

7. J. Shin, S. Y. Yi, Y. J. Hong, and J. H. Suh, Journal of Institute of Control, Robotics and Systems 16, 751 (2010).

8. A. Harmat, and I. Sharf, in Canadian Conference on Computer and Robot Vision (CRV) (2014).

9. C. Zhang, J. Xu, N. Xi, Y. Jia, and W. Li, in International Conference on Advanced Intelligent Mechatronics IEEE/ASME 43 (2012).

10. B. Bacca, X. Cufi, and J. Salvi, IET Computer Vision 7, 135 (2013).

11. F. Zhou, X. Chai, T. Ye, and X. Chen, Chin. Opt. Lett. 13, 121501 (2015).

12. B. Wu, T. Xue, T. Zhang, and S. Ye, Meas. Sci. Technol. 21, 283 (2010).

13. B. Wu, F. Zhang, and T. Xue, Measurement 61, 263 (2015).

14. F. Zhou, Y. Cui, B. Peng, and Y. Wang, Opt. Laser Technol. 44, 1840 (2012).

15. B. Dong, and R. Wang, Chin. Opt. Lett. 14, 031406 (2016).

16. O. Xu, S. Lu, S. Feng, and S. Jian, Chin. Opt. Lett. 6, 818 (2008).

17. B. Wu, and Y. Zhang, Adv. Mech. Eng. 5, 587904 (2013).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387