2018-10-18 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 14 , 2016    10.3788/COL201614.111601

Temperature-dependent optical response of phase-only nematic liquid crystal on silicon devices
Zichen Zhang1, Huan Xu2, Haining Yang2, Zheng You3, and D. P. Chu2
1 [Institute of Microelectronics], Chinese Academy of Sciences, Beijing 1 00029, China
2 Electrical Engineering Division, Department of Engineering, [University of Cambridge], 9JJ Thomson Ave, Cambridge CB3 0FA, UK
3 State Key Laboratory of Precision Measurement Technology and Instruments, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System
Department of Precision Instrument, [Tsinghua University], Beijing 100029, China

Chin. Opt. Lett., 2016, 14(11): pp.111601

Keywords(OCIS Code): 160.3710  230.0230  070.6120  

Wavelength-dependent birefringence and dielectric anisotropy, two major optical properties of the nematic liquid crystal materials used in phase-only liquid crystal on silicon (LCOS) devices, are measured as a function of operating temperatures. The dynamic phase modulation depth and threshold voltage of these phase-only LCOS devices are also measured in the corresponding temperature range and compared with theoretical predictions. The results show that the dynamic response time can be reduced significantly by an appropriate increase of device operative temperature, while the necessary device elements, such as phase modulation depth and threshold voltage, can be maintained at the same time.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (414 KB)


Posted online:2016/10/26

Get Citation: Zichen Zhang, Huan Xu, Haining Yang, Zheng You, and D. P. Chu, "Temperature-dependent optical response of phase-only nematic liquid crystal on silicon devices," Chin. Opt. Lett. 14(11), 111601(2016)

Note: This work was supported by the Beijing Natural Science Foundation (No. 4144076), the National Natural Science Foundation of China (Nos. 61307077 and 61376083), and the China Postdoctoral Science Foundation (Nos. 2013M530613 and 2015T80080). It is also supported by the EPSRC Platform Grant for Liquid Crystal Photonics (EP/F00897X/1).


1. E. Buckley, Proc. Sid. Symposium 39, 1074 (2008).

2. H. Zhang, Y. Zhao, L. Cao, and G. Jin, Chin. Opt. Lett. 12, 060002 (2014).

3. N. Kim, M. A. Alam, L. T. Bang, A.-H. Phan, M.-L. Piao, and M.-U. Erdenebat, Chin. Opt. Lett. 12, 060005 (2014).

4. X. Li, C. P. Chen, Y. Li, X. Jiang, H. Li, W. Hu, G. He, J. Lu, and Y. Su, Chin. Opt. Lett. 12, 060003 (2014).

5. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, Opt. Express 15, 16177 (2007).

6. W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, J. Lightwave Technol. 18, 1845 (2000).

7. N. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, J. Lightwave Technol. 26, 73 (2008).

8. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2006), 94.

9. Z. C. Zhang, Z. You, and D. P. Chu, Light Sci. Appl. 3, e213 (2014).

10. M. Handschy, Solid State Technol. 43, 151 (2000).

11. A. Choubey, F. Andros, and B. G. Sammakia, IEEE Trans. Comp. Packag. Technol. 28, 303 (2005).

12. Z. C. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, B. Crossland, D. P. Chu, and B. Milne, J. Disp. Technol. 7, 120 (2011).

13. C. Uche, B. Fracasso, W. A. Crossland, J. L. D. de la Tocnaye, and T. D. Wilkinson, Ferroelectrics 278, 219 (2002).

14. T. X. Lu, M. Pivnenko, B. Robertson, and D. P. Chu, Appl. Opt. 54, 5903 (2015).

15. X. D. Xun, and R. W. Cohn, Appl. Opt. 43, 6400 (2004).

16. S. Reichelt, Appl. Opt. 52, 2610 (2013).

17. J. Oton, P. Ambs, M. S. Millan, and E. Perez-Cabre, Appl. Opt. 46, 5667 (2007).

18. Z. C. Zhang, H. N. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. P. Chu, Appl. Opt. 51, 3837 (2012).

19. D. Engstrom, M. Persson, J. Bengtsson, and M. Goksor, Opt. Express 21, 16086 (2013).

20. B. Robertson, Z. C. Zhang, M. M. Redmond, N. Collings, J. S. Liu, R. S. Lin, A. M. Jeziorska-Chapman, J. R. Moore, W. A. Crossland, and D. P. Chu, Appl. Opt. 51, 659 (2012).

21. J. Li, S. Gauza, and S. T. Wu, J. Appl. Phys. 96, 19 (2004).

22. M. F. Vuks, Opt. Spectrosc. 20, 361 (1966).

23. Y. Q. Lin, S. M. Feng, and T. Chen, Optik 121, 1693 (2010).

24. U. Finkenzeller, T. Geelhaar, G. Weber, and L. Pohl, Liq. Cryst. 5, 313 (1989).

25. S. T. Wu, Phys. Rev. A 33, 1270 (1986).

26. S.-F. Cheung, in University of Cambridge Part II Long Vocation Project (2010).

27. J. Garcia-Marquez, V. Lopez, A. Gonzalez-Vega, and E. Noe, Opt. Express 20, 8431 (2012).

28. W. Maier, and G. Meier, Zeitschrift Fur Naturforschung 16, 262 (1961).

29. S.-T. W. Deng-Ke Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

30. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, Opt. Express 21, 1779 (2013).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387