2017-09-22 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 07 , Vol. 15 , 2017    10.3788/COL201715.071901


Intense keV IAP generation by orthogonally polarized multicycle midinfrared two-color laser fields
Guicun Li1;2, Yinghui Zheng1, Zhinan Zeng1, and Ruxin Li1
1 [Shanghai Institute of Optics and Fine Mechanics], Chinese Academy of Sciences, Shanghai 201 800, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2017, 15(07): pp.071901

DOI:10.3788/COL201715.071901
Topic:Nonlinear optics
Keywords(OCIS Code): 190.2620  020.2649  320.2250  320.7110  

Abstract
We theoretically investigate the attosecond pulse generation in an orthogonal multicycle midinfrared two-color laser field. It is demonstrated that multiple continuum-like humps, which consist of about twenty orders of harmonics and an intensity of about one order higher than the adjacent normal harmonics, are generated when longer wavelength driving fields are used. By filtering these humps, intense isolated attosecond pulses (IAPs) are directly generated without any phase compensation. Our proposal provides a simple technique to generate intense IAPs with various central photon energies covering the multi-keV spectral regime by using multicycle midinfrared driving pulses with high pump energy in the experiment.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (515 KB)

Share:


Received:2017/3/14
Accepted:2017/4/7
Posted online:2017/5/2

Get Citation: Guicun Li, Yinghui Zheng, Zhinan Zeng, and Ruxin Li, "Intense keV IAP generation by orthogonally polarized multicycle midinfrared two-color laser fields," Chin. Opt. Lett. 15(07), 071901(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11127901, 61521093, 11134010, 11227902, 11574332, 1151101142, 61690223, and 11274325), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB16), and the Youth Innovation Promotion Association of Chinese Academy of Sciences.



References

1. M. Kitzler, and M. Lezius, Phys. Rev. Lett. 95, 253001 (2005).

2. H. Niikura, H. J. W?rner, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. Lett. 107, 093004 (2011).

3. P. B. Corkum, and F. Krausz, Nat. Phys. 3, 381 (2007).

4. F. Krausz, and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

5. A. Baltuska, T. Udem, M. Uiberacker, E. Goulielmakis, C. Gohle, R. Holzwart, V. S. Yakovlev, A. Scrinz, T. W. H?nsch, and F. Krausz, Nature 421, 611 (2003).

6. T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. G. Tisch, D. D. Meyerhofer, and M. H. R. Hutchinson, Phys. Rev. Lett. 77, 4756 (1996).

7. P. Salières, A. L’Huillier, and M. Lewenstein, Phys. Rev. Lett. 74, 3776 (1995).

8. T. Brabec, and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

9. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

10. P. Antoine, A. L’Huillier, and M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996).

11. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997).

12. M. Ivanov, P. B. Corkum, T. Zuo, and A. Bandrauk, Phys. Rev. Lett. 74, 2933 (1995).

13. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98, 203901 (2007).

14. C. Jin, and C. D. Lin, Chin. Phys. B 25, 094213 (2016).

15. F. Li, G. L. Wang, S. F. Zhao, and X. X. Zhou, Chin. Phys. Lett. 32, 014210 (2015).

16. P. C. Li, C. Laughlin, and S. I. Chu, Phys. Rev. A 89, 023431 (2014).

17. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, Opt. Lett. 37, 3891 (2012).

18. M. C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).

19. A. Andriukaitis, T. Bal?iūnas, S. Ali?auskas, A. Pug?lys, A. Baltu?ka, T. Popmintchev, M. C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).

20. T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ali?auskas, G. Andriukaitis, T. Bal?iunas, O. D. Mücke, A. Pugzlys, A. Baltu?ka, B. Shim, S. E. Schrauth, A. Gaeta, C. H. García, L. Plaja, A. Becker, A. J. Becker, M. M. Murnane, and H. C. Kapteyn, Science 336, 1287 (2012).

21. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, Phys. Rev. Lett. 101, 253901 (2008).

22. F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, Nat. Commun. 6, 6611 (2015).

23. S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Bieger, Nat. Commun. 7, 11493 (2016).

24. J. Li, X. Ren, Y. Yin, Y. Cheng, E. Cunningham, Y. Wu, and Z. Chang, Appl. Phys. Lett. 108, 231102 (2016).

25. J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F. DiMauro, Phys. Rev. Lett. 98, 013901 (2007).

26. A. D. Shiner, C. T. Herrero, N. Kajumba, H. C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Phys. Rev. Lett. 103, 073902 (2009).

27. H. Du, H. Wang, and B. Hu, Phys. Rev. A 81, 063813 (2010).

28. W. Hong, P. Lu, Q. Li, and Q. Zhang, Opt. Lett. 34, 2102 (2009).

29. X. Song, Z. Zeng, Y. Fu, B. Cai, R. Li, Y. Cheng, and Z. Xu, Phys. Rev. A 76, 043830 (2007).

30. X. Gong, P. He, Q. Song, Q. Ji, H. Pan, J. Ding, F. He, H. Zeng, and J. Wu, Phys. Rev. Lett. 113, 203001 (2014).

31. Q. Song, P. Lu, X. Gong, Q. Ji, K. Lin, W. Zhang, J. Ma, H. Zeng, and J. Wu, Phys. Rev. A 95, 013406 (2017).

32. D. J. Hoffmann, C. Hutchison, A. Za?r, and J. P. Marangos, Phys. Rev. A 89, 023423 (2014).

33. I. J. Kim, C. M. Kim, H. T. Kim, G. H. Lee, Y. S. Lee, J. Y. Park, D. J. Cho, and C. H. Nam, Phys. Rev. Lett. 94, 243901 (2005).

34. C. M. Kim, I. J. Kim, and C. H. Nam, Phys. Rev. A 72, 033817 (2005).

35. L. Brugnera, D. J. Hoffmann, T. Siegel, F. Frank, A. Za?r, J. W. G. Tisch, and J. P. Marangos, Phys. Rev. Lett. 107, 153902 (2011).

36. Y. L. Yu, X. H. Song, Y. X. Fu, R. X. Li, Y. Cheng, and Z. Z. Xu, Opt. Express 16, 686 (2008).

37. J. J. Xu, Phys. Rev. A 83, 033823 (2011).

38. Y. Zheng, H. Diao, Z. Zeng, X. Ge, R. Li, and Z. Xu, Phys. Rev. A 92, 033417 (2015).

39. P. Wei, J. Miao, Z. Zeng, C. Li, X. Ge, R. Li, and Z. Xu, Phys. Rev. Lett. 110, 233903 (2013).

40. I. P. Christov, R. Bartels, H. C. Kapteyn, and M. M. Murnane, Phys. Rev. Lett. 86, 5458 (2001).

41. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).

42. J. H. Kim, H. J. Shin, D. G. Lee, and C. H. Nam, Phys. Rev. A 62, 055402 (2000).

43. B. R. Galloway, D. Popmintchev, E. Pisanty, D. D. Hickstein, M. M. Murnane, H. C. Kapteyn, and T. Popmintchev, Opt. Express 24, 021818 (2016).

44. W. Cao, P. Lu, P. Lan, X. Wang, and G. Yang, Phys. Rev. A 74, 063821 (2006).

45. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. A 57, R2285 (1998).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387