Laser speckle imaging and wavelet analysis of cerebral blood flow associated with the opening of the blood–brain barrier by sound
O. Semyachkina-Glushkovskaya1,
A. Abdurashitov1,
A. Pavlov1;2,
A. Shirokov3,
N. Navolokin4,
O. Pavlova1,
A. Gekalyuk1,
M. Ulanova1,
N. Shushunova1,
A. Bodrova1,
E. Saranceva1,
A. Khorovodov1,
I. Agranovich1,
V. Fedorova1,
M. Sagatova1,
A. E. Shareef1,
C. Zhang5;6,
D. Zhu5;6,
and V. Tuchin1;7;8
1 [Saratov National Research State University], Saratov 41 001 2, Russia
2 [Yuri Gagarin State Technical University of Saratov], Saratov 410054, Russia
3 [Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences], Saratov 410049, Russia
4 [Saratov State Medical University], Saratov 4 10012, Russia
5 Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), [Huazhong University of Science and Technology (HUST)], Wuhan 430074, China
6 Key Laboratory for Biomedical Photonics, [HUST], Ministry of Education, Wuhan 430074, China
7 [National Research Tomsk State University], Tomsk 634050, Russia
8 [Institute of Precision Mechanics and Control, Russian Academy of Sciences], Saratov 410028 , Russia
Chin. Opt. Lett.,
2017,
15(09):
pp.090002
DOI:10.3788/COL201715.090002Topic:General
Keywords(OCIS Code):
000.1439 030.6140 070.4340 100.7410
Abstract
The cerebral blood flow (CBF) alterations related to sound-induced opening of the blood–brain barrier (BBB) in adult mice are studied using laser speckle contrast imaging (LSCI) and wavelet analysis of vascular physiology. The results clearly show that the opening of the BBB is accompanied by the changes of venous but not microvessel circulation in the brain. The elevation of the BBB permeability is associated with the decrease of venous CBF and the increase of its complexity. These data suggest that the cerebral veins rather than microvessels are sensitive components of the CBF related to the opening BBB.
Copyright: © 2003-2012 . This is an open-access article distributed under the terms
of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
View
PDF (449 KB)
Received:2017/4/19
Accepted:2017/6/6
Posted online:2017/6/28
Get Citation:
O. Semyachkina-Glushkovskaya, A. Abdurashitov, A. Pavlov, A. Shirokov, N. Navolokin, O. Pavlova, A. Gekalyuk, M. Ulanova, N. Shushunova, A. Bodrova, E. Saranceva, A. Khorovodov, I. Agranovich, V. Fedorova, M. Sagatova, A. E. Shareef, C. Zhang, D. Zhu, and V. Tuchin, "Laser speckle imaging and wavelet analysis of cerebral blood flow associated with the opening of the blood–brain barrier by sound," Chin. Opt. Lett.
15(09),
090002(2017)
Note:
This work was supported by the Grant of Russian Science Foundation No 17-15-01263. C. Zhang and D. Zhu acknowledge support by the Open Research Fund of Key Laboratory for Biomedical Photonics, HUST, Ministry of Education, China.
References
1. T. Broman, Acta Psych. Et Neurol. 16, 1 (1941).
2. U. Friedemann, Physiol. Rev. 22, 125 (1942).
3. W. M. Pardridge, Expert Opin. Drug Delivery 13, 963 (2016).
4. R. Spector, R. F. Keep, and S. R. Snodgrass, Exp. Neurol. 267, 78 (2015).
5. C. Joakim, B. D’Angelo, A. A. Baburamani, C. Lehner, and A. L. Leverin, J. Cereb. Blood Flow Metab. 35, 818 (2015).
6. O. Tomkins, O. Friedman, S. Ivens, C. Reiffurth, and S. Major, Neurobiol. Dis. 25, 367 (2007).
7. N. J. Abbott and A. Friedman, Epilepsia 53, 1 (2012).
8. E. A. Neuwelt, Neurosurgery 54, 131 (2004).
9. D. Fernandez-Lopez, J. Faustino, R. Daneman, L. Zhou, and S. Y. Lee, J. Neurosci. 32, 9588 (2012).
10. Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies, Guide for the care and use of laboratory animals. 8th ed. The National Academies Press; 2011. http://oacu.od.nih.gov/regs/
guide/guide.pdf.
11. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, and M. Larsson, J. Biomed. Opt. 18, 066018 (2013).
12. A. K. Dunn, Ann. Biomed. Eng. 40, 367 (2012).
13. J. F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991).
14. J. F. Muzy, E. Bacry, and A. Arneodo, Int. J. Bifurcation Chaos. 4, 245 (1994).
15. A. N. Pavlov and O. N. Pavlova, Tech. Phys. Lett. 34, 306 (2008).
16. P. Ch. Ivanov, L. A. Nunes Amaral, A. L. Goldberger, and S. Havlin, Nature. 399, 461 (1999).
17. A. Hoffmann, Transl. Stroke Res. 2, 106 (2011).
18. S. Nag, Meth. Mol. Med. 89, 133 (2003).
19. O. Semyachkina-Glushkovskaya, A. Pavlov, J. Kurths, E. Borisova, A. Gisbrecht, O. Sindeeva, A. Abdurashitov, A. Shirokov, N. Navolokin, and V. Tuchin, Biomed. Opt. Express. 6, 4088 (2015).
20. A. N. Pavlov, A. S. Abdurashitov, O. N. Pavlova, V. V. Tuchin, O. S. Sindeeva, S. S. Sindeev, and O. V. Semyachkina-Glushkovskaya, J. Innov. Opt. Health Sci. 8, 1550041 (2015).
21. P. K. Pandey, A. K. Sharma, and U. Gupta, Tissue Barriers 4, e1129476 (2016).
22. O. Pragera, Y. Chassidima, C. Kleina, H. Levia, I. Shelefc, and A. Friedmana, Neuroimage 49, 337 (2010).
23. C. J. Ek, B. D’Angelo, A. A. Baburamani, C. Lehner, and A. L. Leverin, J. Cereb. Blood Flow Metab. 35, 818 (2015).
24. H. Hagberg, M. A. Wilson, H. Matsushita, C. Zhu, M. Lange, and M. Gustavsson, J Neurochem. 90, 1068 (2004).
25. M. Hedtj?rn, A. L. Leverin, K. Eriksson, K. Blomgren, C. Mallard, and H. Hagberg, J. Neurosci. 22, 5910 (2002).