2017-09-24 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 15 , 2017    10.3788/COL201715.090005


Optical coherence tomography imaging of cranial meninges post brain injury in vivo
Woo June Choi, Ruikang K. Wang
Department of Bioengineering, [University of Washington], Seattle, WA 98195, USA

Chin. Opt. Lett., 2017, 15(09): pp.090005

DOI:10.3788/COL201715.090005
Topic:General
Keywords(OCIS Code): 170.0170  170.4500  

Abstract
We report a new application of optical coherence tomography (OCT) to investigate the cranial meninges in an animal model of brain injury in vivo. The injury is induced in a mouse due to skull thinning, in which the repeated and excessive drilling exerts mechanical stress on the mouse brain through the skull, resulting in acute and mild brain injury. Transcranial OCT imaging reveals an interesting virtual space between the cranial meningeal layers post skull thinning, which is gradually closed within hours. The finding suggests a promise of OCT as an effective tool to monitor the mechanical trauma in the small animal model of brain injury.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1444 KB)

Share:


Received:2017/3/29
Accepted:2017/7/14
Posted online:2017/8/10

Get Citation: Woo June Choi, Ruikang K. Wang, "Optical coherence tomography imaging of cranial meninges post brain injury in vivo," Chin. Opt. Lett. 15(09), 090005(2017)

Note: This work was supported in part by research grants from the National Institutes of Health (Nos. RO1EB009682 and RO1HL093140). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.



References

1. B. Roozenbeek, A. I. R. Maas, and D. K. Menon, Nat. Rev. Neurol. 9, 231 (2013).

2. M. Gaetz, Clin. Neurophysiol. 115, 4 (2004).

3. Y. Xiong, A. Mahmood, and M. Chopp, Expert Opin. Emerg. Drugs 14, 67 (2013).

4. C. Albert-Weissenberger, and A. L. Sirén, Exp. Transl. Stroke Med. 2, 16 (2010).

5. T. L. Roth, D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern, Nature 505, 223 (2014).

6. C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, Neurophotonics 1, 025004 (2014).

7. Y. Jia, N. J. Alkayed, and R. K. Wang, J. Biomed. Opt. 14, 040505 (2009).

8. https://en.wikipedia.org/wiki/Meninges

9. A. G. Kolias, A. Chari, T. Santarius, and P. J. Hutchinson, Nat. Rev. Neurol. 10, 570 (2014).

10. W. Qin, U. Baran, and R. K. Wang, Lasers Surg. Med. 47, 669 (2015).

11. R. D. Dorand, D. S. Barkauskas, T. A. Evans, A. Petrosiute, and A. Y. Huang, Intravital 3, e29728 (2014).

12. Y. Li, U. Baran, and R. K. Wang, PLoS One 9, e113658 (2014).

13. T. Yamashima, and R. L. Friede, J. Neurol. Neurosurg. Psychiatry 47, 121 (1984).

14. S. Yousefi, Z. Zhi, and R. K. Wang, IEEE Trans. Biomed. Eng. 58, 2316 (2011).

15. R. A. Kristof, J. M. Grimm, and B. Stoffel-Wagner, J. Neurosrug. 108, 275 (2008).

16. U. Baran, W. J. Choi, Y. Li, and R. K. Wang, J. Biophoton. (2016).

17. https://www.netterimages.com/light-micrograph-lm-of-the-meninges-covering-the-monkey-brain- unlabeled-histology-13397.html

18. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, Invest. Ophthalmol. Vis. Sci. 52, 7738 (2011).

19. X. Yin, J. R. Chao, and R. K. Wang, J. Biomed. Opt. 19, 086020 (2014).


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387