2017-09-25 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 15 , 2017    10.3788/COL201715.090006

Implementation of FLIM and SIFT for improved intraoperative delineation of glioblastoma margin
Danying Lin1, Teng Luo1, Liwei Liu1, Yuan Lu2, Shaoxiong Liu3, Zhen Yuan4, and Junle Qu1
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, [Shenzhen University], Shenzhen 51 8060, China
2 Department of Dermatology, [The Sixth People’s Hospital of Shenzhen], Shenzhen 518052 , China
3 Department of Pathology, [The Sixth People’s Hospital of Shenzhen], Shenzhen 518052, China
4 Bioimaging Core, Faculty of Health Sciences, [University of Macau], Taipa, Macau SAR China

Chin. Opt. Lett., 2017, 15(09): pp.090006

Keywords(OCIS Code): 170.3650  170.3880  170.4580  170.4730  

The aim of this study is to develop a novel technique for improving the intraoperative margin assessment of glioblastoma by examining the total extrinsic extracellular matrix (ECM) with eosin staining using fluorescence lifetime imaging microscopy (FLIM) and scale-invariant feature transform (SIFT) descriptor analysis. Pseudo-color FLIM images obviously exhibit ECM distributions, changes in sequential sections, and different regions of interest. Meanwhile, SIFT descriptors are first utilized for the discrimination of glioblastoma margins by matching similar ECM regions and extracting keypoint orientations from FLIM images obtained from a series of continuous slices. The findings indicate that FLIM imaging with SIFT analysis of the total ECM is a promising method for improving intraoperative diagnosis of frozen and surgically excised brain specimen sections.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1185 KB)


Posted online:2017/8/21

Get Citation: Danying Lin, Teng Luo, Liwei Liu, Yuan Lu, Shaoxiong Liu, Zhen Yuan, and Junle Qu, "Implementation of FLIM and SIFT for improved intraoperative delineation of glioblastoma margin," Chin. Opt. Lett. 15(09), 090006(2017)

Note: This work was supported by the National Basic Research Program of China (No. 2015CB352005), the National Natural Science Foundation of China (Nos. 61525503, 61378091, and 61620106016), the Guangdong Natural Science Foundation Innovation Team (No. 2014A030312008), the Hong Kong, Macao and Taiwan cooperation innovation platform & major projects of international cooperation in Colleges and the Universities in Guangdong Province (No. 2015KGJHZ002), and the Shenzhen Basic Research Project (Nos. JCYJ20150930104948169, JCYJ2016032814 4746940, and GJHZ20160226202139185).


1. N. Sanai, M. Y. Polley, M. W. McDermott, A. T. Parsa, and M. S. Berger, J. Neurosurg. 115, 3 (2011).

2. C. Senft, K. Franz, S. Blasel, A. Osvald, J. Rather, V. Seifert, and T. Gasser, Technol. Cancer Res. Treat. 9, 339 (2010).

3. A. Moiyadi, and P. Shetty, J. Neurosci. Rural. Pract. 2, 4 (2011).

4. D. W. Roberts, J. W. Strohbehn, J. F. Hatch, W. Murray, and H. Kettenberger, J. Neurosurg. 65, 545 (1986).

5. P. M. Black, T. Moriarty, E. Alexander, P. Stieg, E. J. Woodard, P. L. Gleason, C. H. Martin, R. Kikinis, R. B. Schwartz, and F. A. Jolesz, Neurosurgery 41, 831 (1997).

6. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, Lancet. Oncol. 7, 392 (2006).

7. K. Tofte, C. Berger, S. H. Torp, and O. Solheim, Surg. Neurol. Int. 5, 170 (2014).

8. D. Orringer, D. Lau, S. Khatri, G. J. Zamora-Berridi, K. Zhang, C. Wu, N. Chaudhary, and O. Sagher, J. Neurosurg. 117, 851 (2012).

9. S. R. Kantelhardt, D. Kalasauskas, K. K?nig, E. Kim, M. Weinigel, A. Uchugonova, and A. Giese, J. Neurooncol. 127, 473 (2016).

10. F. K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, Cancer. Res. 76, 3451 (2016).

11. J. Zamecnik, Acta. Neuropathol. 110, 435 (2005).

12. V. Senner, S. Ratzinger, S. Mertsch, S. Gr?ssel, and W. Paulus, FEBS. Lett. 582, 3293 (2008).

13. N. V. Kuzmin, P. Wesseling, P. C. Hamer, D. P. Noske, G. D. Galgano, H. D. Mansvelder, J. C. Baayen, and M. L. Groot, Biomed. Opt. Express 7, 1889 (2016).

14. R. Galli, O. Uckermann, A. Temme, E. Leipnitz, M. Meinhardt, E. Koch, G. Schackert, G. Steiner, and M. Kirsch, J. Biophoton. 10, 404 (2017).

15. L. Birla, A. M. Cristian, and M. Hillebrand, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 60, 551 (2004).

16. A. De Rossi, L. B. Rocha, and M. A. Rossi, J. Oral. Pathol. Med. 36, 377 (2007).

17. J. Jakubovsky, L. Guller, M. Cerná, K. Balázová, S. Polák, V. Jakubovská, and P. Babál, Acta Histochem. 104, 353 (2002).

18. M. Y. Berezin, and S. Achilefu, Chem. Rev. 110, 2641 (2010).

19. Y. Sun, R. N. Day, and A. Periasamy, Nat. Protoc. 6, 1324 (2011).

20. C. H. Liu, B. B. Das, W. L. Sha Glassman, G. C. Tang, K. M. Yoo, H. R. Zhu, D. L. Akins, S. S. Lubicz, J. Cleary, R. Prudente, E. Celmer, A. Caron, and R. R. Alfano, J. Photochem. Photobiol. B. 16, 187 (1992).

21. A. Vedaldi, and B. Fulkerson, in Proceedings of the 18th ACM international conference on Multimedia (2010), p.?1469.

22. J. Chen, and J. Tian, Conf. Proc. IEEE. Eng. Med. Biol. Soc. 1, 1437 (2006).

23. J. Gu, C. Y. Fu, B. K. Ng, S. Gulam Razul, and S. K. Lim, J. Biophoton. 7, 483 (2014).

24. R. Mercatelli, F. Ratto, F. Rossi, F. Tatini, L. Menabuoni, A. Malandrini, R. Nicoletti, R. Pini, F. S. Pavone, and R. Cicchi, J. Biophoton. 10, 75 (2017).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387