2017-09-26 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 15 , 2017    10.3788/COL201715.090603

Frequency-doubled triangular shape lightwave generation with a flexible modulation index
Jing Li1;2, Ze Hao1;2, Li Pei1;2, Tigang Ning1;2, and Jingjing Zheng1;2
1 Key Lab of All Optical Network &
Advanced Telecommunication Network of EMC, [Beijing Jiaotong University], Beijing 1 00044, China
2 Institute of Lightwave Technology, [Beijing Jiaotong University], Beijing 100044, China

Chin. Opt. Lett., 2017, 15(09): pp.090603

Topic:Fiber optics and optical communication
Keywords(OCIS Code): 060.1155  060.5625  060.4080  

An approach for full duty frequency-doubled triangle shape lightwave generation is proposed and demonstrated. It requires a dual-parallel Mach–Zehnder modulator (DP-MZM) driven by a sinusoidal signal. A stop band filter is coupled to filter out two undesired sidebands. By tuning the bias voltage applied to the DP-MZM, the output optical intensity with a full duty cycle triangle shape profile can be obtained. It is found that the required modulation index is no longer a fixed one. It can vary within a range, without degrading the target waveform. The principle is analyzed by theory and evaluated by simulation. A proof-of-concept experiment is also conducted. Good agreements between theoretical prediction and experimental results have been found. This approach might be attractive due to the feature of a variable modulation index, which insures simple operation in practice.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (899 KB)


Posted online:2017/7/3

Get Citation: Jing Li, Ze Hao, Li Pei, Tigang Ning, and Jingjing Zheng, "Frequency-doubled triangular shape lightwave generation with a flexible modulation index," Chin. Opt. Lett. 15(09), 090603(2017)

Note: This work was supported in part by the National Natural Science Foundation of China under Grant No. 61405007.


1. J. Li, T. Ning, L. Pei, J. Zheng, J. Sun, Y. Li, and J. Yuan, Chin. Opt. Lett. 13, 080606 (2015).

2. H. Chen, T. Ning, J. Li, L. Pei, J. Yuan, and X. Wen, Chin. Opt. Lett. 15, 060605 (2017).

3. C. Gui, and J. Wang, Photon. Res. 4, 168 (2016).

4. F. Parmigiani, M. Ibsen, T. T. Ng, L. A. Provost, P. Petropoulos, and D. J. Richardson, in 2008 Optical Fiber Communication Conference (OFC’08) (2008), paper?OMP3.

5. R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, in 34th European Conference on Optical Communication (ECOC 2008) (2008), paper?Th.1.B.2.

6. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, in 34th European Conference on Optical Communication (ECOC 2008) (2008), paper?Mo.3.F.4.

7. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).

8. B. Dai, Z. Gao, X. Wang, H. Chen, N. Kataoka, and N. Wada, J. Lightwave Technol. 31, 145 (2013).

9. J. Li, X. Zhang, B. Hraimel, T. Ning, L. Pei, and K. Wu, J. Lightwave Technol. 30, 1617 (2012).

10. J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).

11. W. Liu, and J. Yao, J. Lightwave Technol. 32, 3637 (2014).

12. F. Zhang, X. Ge, and S. Pan, Opt. Lett. 38, 4491 (2013).

13. J. Li, T. Ning, L. Pei, W. Peng, N. Jia, Q. Zhou, and X. Wen, Opt. Lett. 36, 3828 (2011).

14. W. Li, W. T. Wang, and N. H. Zhu, IEEE Photonics J. 6, 1 (2014).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387