2018-05-21 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 15 , 2017    10.3788/COL201715.091901

Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing
Chuanyi Zhu, Yuping Chen, Guangzhen Li, Licheng Ge, Bing Zhu, Mengning Hu, and Xianfeng Chen
State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, [Shanghai Jiao Tong University], Shanghai 200240, China

Chin. Opt. Lett., 2017, 15(09): pp.091901

Topic:Nonlinear optics
Keywords(OCIS Code): 190.4390  130.3730  190.2620  

Developing natural “free space” frequency upconversion is essential for photonic integrated circuits. In a single-crystal lithium niobate thin film planar waveguide of less than 1 μm thickness, we achieve type I and type II mode phase-matching conditions simultaneously for this thin film planar waveguide. Finally, by employing the mode phase matching of e+e→e with d33 at 1018 nm, we successfully achieve a green second-harmonic wave output with the conversion efficiency of 0.12%/(W·cm2), which verifies one of our simulation results. The rich mode phase matching for three-wave mixing in a thin film planar waveguide may provide a potential application in on-chip frequency upconversions for integrated photonic and quantum devices.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (570 KB)


Posted online:2017/6/15

Get Citation: Chuanyi Zhu, Yuping Chen, Guangzhen Li, Licheng Ge, Bing Zhu, Mengning Hu, and Xianfeng Chen, "Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing," Chin. Opt. Lett. 15(09), 091901(2017)

Note: This work was supported by the National Natural Science Foundation of China under Grant Nos. 11574208 and 61235009.


1. K. K. Wong, ed., Properties of Lithium Niobate , EMIS Datareviews No. 28 (INSPEC, 2002).

2. M. Abarkan, M. Aillerie, N. Kokanyan, C. Teyssandier, and E. Kokanyan, Opt. Mater. Express 4, 179 (2014).

3. H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, Opt. Mater. Express 4, 541 (2014).

4. G.-Z. Li, Y.-P. Chen, H.-W. Jiang, and X.-F. Chen, Photon. Res. 3, 168 (2015).

5. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, Appl. Phys. Lett. 89, 191123 (2006).

6. X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, Opt. Lett. 41, 2410 (2016).

7. G. Poberaj, H. Hu, W. Sohler, and P. Guenter, Laser Photon. Rev. 6, 488 (2012).

8. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, Opt. Mater. 31, 1054 (2009).

9. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, Opt. Express 24, 1386 (2016).

10. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, Sci. Rep. 5, 8072 (2015).

11. W. C. Jiang, and Q. Lin, Sci. Rep. 6, 36920 (2016).

12. S. Duan, Y. Chen, G. Li, C. Zhu, and X. Chen, Chin. Opt. Lett. 14, 042301 (2016).

13. H. Hu, R. Ricken, and W. Sohler, Opt. Express 17, 24261 (2009).

14. G. Ulliac, V. Calero, A. Ndao, F. Baida, and M.-P. Bernal, Opt. Mater. 53, 1 (2016).

15. L. Cai, Y. Wang, and H. Hu, Opt. Commun. 387, 405 (2017).

16. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, Opt. Lett. 40, 2715 (2015).

17. J.-l. Kou, Q. Wang, Z.-Y. Yu, F. Xu, and Y.-Q. Lu, Opt. Lett. 36, 2533 (2011).

18. R. S. Weis, and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).

19. R. W. Boyd, Nonlinear Optics (Academic, 2010).

20. J. Zhang, Y. Chen, F. Lu, and X. Chen, Opt. Express 16, 6957 (2008).

21. Y. Wu, B. C. Yao, Q. Y. Feng, X. L. Cao, X. Y. Zhou, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, Y. F. Chen, and K. S. Chiang, Photon. Res. 3, A64 (2015).

22. H. Han, L. Cai, and H. Hu, Opt. Mater. 42, 47 (2015).

23. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B91, 343 (2008).

24. D. H. Jundt, Opt. Lett. 22, 1553 (1997).

25. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (R. Doneuey & Sons Company, 1987).

26. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, J. Appl. Phys. 73, 2695 (1993).

27. M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, and M. Asobe, Opt. Lett. 35, 1239 (2010).

28. M. Hu, Y. Chen, G. Li, and X. Chen, Chin. Opt. Lett. 14, 061301 (2016).

29. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).

30. T. Dirk, L. Frederik Van, A. Melanie, B. Wim, T. Dries Van, B. Peter, and B. Roel, Jpn. J. Appl. Phys. 45, 6071 (2006).

31. G. Li, Y. Chen, H. Jiang, and X. Chen, Opt. Lett. 42, 939 (2017).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387