2018-07-17 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 15 , 2017    10.3788/COL201715.092301

Detection of low-concentration EGFR with a highly sensitive optofluidic resonator
Jianfeng Shang1, Hailang Dai1, Yun Zou2, and Xianfeng Chen1
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, [Shanghai Jiao Tong University], Shanghai 200240, China
2 Shanghai Key Laboratory of Crime Science Evidence, [Shanghai Research Institute of Criminal Science and Technology], Shanghai 2 00083, China

Chin. Opt. Lett., 2017, 15(09): pp.092301

Topic:Optical devices
Keywords(OCIS Code): 230.7390  280.4788  160.1435  

A hollow-core metal-cladding waveguide (HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes (UOMs) at the coupled angle, which can be used as an optofluidic resonator to detect alterations of the epidermal growth factor receptor (EGFR) concentration. Theoretical analysis shows that the UOMs excited in the HCMW have a highly sensitive response to the refractive index (RI) variation of the guiding layer. An EGFR solution with a 0.2 ng/mL alteration is detected, and the RI variation caused by the concentration alteration is about 2.5×10?3.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (431 KB)


Posted online:2017/7/12

Get Citation: Jianfeng Shang, Hailang Dai, Yun Zou, and Xianfeng Chen, "Detection of low-concentration EGFR with a highly sensitive optofluidic resonator," Chin. Opt. Lett. 15(09), 092301(2017)

Note: This work was supported by the National Natural Science Foundation of China (No. 61235009) and the National Basic Research Programmer of China (No. 2013CBA01703).


1. S. Cohen, Proc. Natl. Acad. Sci. U.S.A. 46, 302 (1960).

2. S. Cohen, J. Biol. Chem. 237, 1555 (1962).

3. J. P. Gills, and L. G. McIntyre, J. Am. Optom. Assoc. 60, 442 (1989).

4. S. Huang, J. M. Trujillo, and S. Chakrabarty, Int. J. Cancer 52, 978 (1992).

5. J. Reeves, R. C. Richards, and T. Cooke, Br. J. Cancer 63, 223 (1991).

6. D. M. Moriarity, D. M. Disorbo, G. Litwack, and C. R. Savage, Proc. Natl. Acad. Sci. U.S.A. 78, 2752 (1981).

7. A. Vambutas, T. P. Di Lorenzo, and B. M. Steinberg, Cancer Res. 53, 910 (1993).

8. D. E. Neal, C. Marsh, M. K. Bennett, P. D. Abel, R. R. Hall, J. R. Sainsbury, and A. L. Harris, Lancet 325, 366 (1985).

9. Y. Yonemura, K. Sugiyama, T. Fujimura, T. Kamata, S. Fushida, A. Yamaguchi, X. De Aretxebala, K. Miwa, and I. Miyazaki, Oncology 46, 158 (1989).

10. C. J. Piyathilake, A. R. Frost, U. Manne, H. Weiss, W. C. Bell, D. C. Heimburger, and W. E. Grizzle, Clin. Cancer Res. 8, 734 (2002).

11. R. Polosa, G. Prosperini, S. H. Leir, S. T. Holgate, P. M. Lackie, and D. E. Davies, Am. J. Respir. Cell Mol. Biol. 20, 914 (1999).

12. W. W. Lai, F. F. Chen, M. H. Wu, N. Chow, W. Su, M. Ma, P. Su, H. H. W. Chen, M. Lin, and Y. Tseng, Ann. Thorac. Surg. 72, 1868 (2001).

13. Y. Abe, T. Sagawa, K. Sakai, and S. Kimura, Clin. Chim. Acta 168, 87 (1987).

14. H. Sasaki, H. Yukiue, K. Mizuno, A. Sekimura, A. Konishi, and M. Yano, Int. J. Clin. Oncol. 8, 0079 (2003).

15. J. Zhang, Z. Zhang, W. Ge, and Z. Yuan, Chin. Opt. Lett. 14, 081702 (2016).

16. C. Weng, and X. Zhang, Chin. Opt. Lett. 13, 101701 (2015).

17. F. Liu, J. Zhang, Y. Deng, D. Wang, Y. Lu, and X. Yu, Sens. Actuators B: Chem. 153, 398 (2011).

18. J. Homola, Chem. Rev. 108, 462 (2008).

19. X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).

20. G. Lan, S. Liu, X. Zhang, Y. Wang, and Y. Song, Chin. Opt. Lett. 14, 022401 (2016).

21. Z. Yang, C. Liu, Y. Gao, J. Wang, and W. Yang, Chin. Opt. Lett. 14, 042401 (2016).

22. A. Sessitsch, C. Huang, J. Dostalek, and W. Knoll, Anal. Chem. 83, 674 (2011).

23. H. J. Watts, C. R. Lowe, and D. V. Pollardknight, Anal. Chem. 66, 2465 (1994).

24. M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, M. B. Mcdonnell, and N. J. Goddard, Biosens. Bioelectron. 21, 293 (2005).

25. R. Horvath, H. C. Pedersen, and N. B. Larsen, Appl. Phys. Lett. 81, 2166 (2002).

26. H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).

27. I. P. Kaminow, W. L. Mammel, and H. P. Weber, Appl. Opt. 13, 396 (1974).

28. H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).

29. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chim. Acta 620, 8 (2008).

30. Y. Wang, M. Huang, X. Guan, Z. Cao, F. Chen, and X. Wang, Opt. Express 21, 31130 (2013).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387