2017-11-20 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 09 , Vol. 15 , 2017    10.3788/COL201715.092701


Effect of unbalanced and common losses in quantum photonic integrated circuits
Ming Li1;2, Changling Zou1;2, Guangcan Guo1;2, and Xifeng Ren1;2
1 Key Laboratory of Quantum Information, CAS, [University of Science and Technology of China], Hefei 230026, China
2 Synergetic Innovation Center of Quantum Information &
Quantum Physics, [University of Science and Technology of China], Hefei 2 3002 6, China

Chin. Opt. Lett., 2017, 15(09): pp.092701

DOI:10.3788/COL201715.092701
Topic:Quantum optics
Keywords(OCIS Code): 270.0270  130.0130  

Abstract
Loss is inevitable for the optical system due to the absorption of materials, scattering caused by the defects, and surface roughness. In quantum optical circuits, the loss can not only reduce the intensity of the signal, but also affect the performance of quantum operations. In this work, we divide losses into unbalanced linear losses and shared common losses, and provide a detailed analysis on how loss affects the integrated linear optical quantum gates. It is found that the orthogonality of eigenmodes and the unitary phase relation of the coupled waveguide modes are destroyed by the loss. As a result, the fidelity of single- and two-qubit operations decreases significantly as the shared loss becomes comparable to the coupling strength. Our results are important for the investigation of large-scale photonic integrated quantum information processes.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (487 KB)

Share:


Received:2017/3/16
Accepted:2017/5/23
Posted online:2017/6/16

Get Citation: Ming Li, Changling Zou, Guangcan Guo, and Xifeng Ren, "Effect of unbalanced and common losses in quantum photonic integrated circuits," Chin. Opt. Lett. 15(09), 092701(2017)

Note: This work was supported by the National Natural Science Foundation of China (Nos. 11374289, 61590932, and 61505195), the National Key R & D Program (Nos. 2016YFA0301700 and 2016YFA0301300), the Innovation Funds from the Chinese Academy of Sciences (No. 60921091), and the Fundamental Research Funds for the Central Universities and the Open Fund of the State Key Laboratory on Integrated Optoelectronics (IOSKL2015KF12). We thank Xiao Xiong for useful discussion.



References

1. D. Dai, J. Bauters, and J. E. Bowers, Light Sci. Appl. 1, e1 (2012).

2. X. Chen, C. Qiu, Z. Sheng, A. Wu, H. Huang, Y. Zhao, W. Li, X. Wang, S. Zou, and F. Gan, Chin. Opt. Lett. 14, 081301 (2016).

3. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G. C. Guo, Opt. Lett. 36, 3630 (2011).

4. A. Liu, X. Xiong, X. Ren, and G. Guo, Chin. Opt. Lett. 12, 072401 (2014).

5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, Science 320, 646 (2008).

6. K. Poulios, R. Keil, D. Fry, J. D. A. Meinecke, J. C. F. Matthews, A. Politi, M. Lobino, M. Gr?fe, M. Heinrich, S. Nolte, A. Szameit, and J. L. O’Brien, Phys. Rev. Lett. 112, 143604 (2014).

7. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev. Lett. 108, 010502 (2012).

8. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Science 339, 798 (2013).

9. Y. J. Cai, M. Li, X. F. Ren, C. L. Zou, X. Xiong, H. L. Lei, B. H. Liu, G. P. Guo, and G. C. Guo, Phys. Rev. Appl. 2, 014004 (2014).

10. S. M. Wang, Q. Q. Cheng, Y. X. Gong, P. Xu, C. Sun, L. Li, T. Li, and S. N. Zhu, Nat. Commun. 7, 11490 (2016).

11. S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Phys. Rev. A 57, 2134 (1998).

12. J. Jeffers, J. Mod. Opt. 47, 1819 (2000).

13. C. K. Li, R. Roberts, and X. Yin, “Decomposition of unitary matrices and quantum gates,” arXiv: 1210.7366 [quant-ph].

14. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73, 58 (1994).

15. C. G. Xu, X. Xiong, C. L. Zou, X. F. Ren, and G. C. Guo, Opt. Express 21, 31253 (2013).

16. M. Li, C. L. Zou, X. F. Ren, X. Xiong, Y. J. Cai, G. P. Guo, L. M. Tong, and G. C. Guo, Nano Lett. 15, 2380 (2015).

17. W. D. Heiss, J. Phys. A Math. Theor. 45, 444016 (2012).

18. I. Rotter, J. Phys. A Math. Theor. 42, 153001 (2009).

19. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014).

20. C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

21. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

22. R. W. Heeres, L. P. Kouwenhoven, and V. Zwiller, Nat. Nanotechnol. 8, 719 (2013).

23. B. Vest, M. C. Dheur, E. Devaux, T. W. Ebbesen, A. Baron, E. Rousseau, J. P. Hugonin, J. J. Greffet, G. Messin, and F. Marquier, “Coalescence and anticoalescence of surface plasmons on a lossy beamsplitter,” arXiv:1610.07479 [quant-ph].


Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387