2017-12-15 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 11 , Vol. 15 , 2017    10.3788/COL201715.112301

Frequency-tunable wireless access scheme based on the optoelectronic oscillating technique
Houjun Wang, Lianshan Yan, Jia Ye, Bin Luo, Wei Pan, Xihua Zou, and Peixuan Li
Center for Information Photonics &
Communications, School of Information Science and Technology, [Southwest Jiaotong University], Chengdu 610031, China

Chin. Opt. Lett., 2017, 15(11): pp.112301

Topic:Optical devices
Keywords(OCIS Code): 230.4910  060.2320  060.5625  350.4010  

A frequency-tunable wireless access scheme based on optoelectronic oscillating technology is proposed and experimentally demonstrated. By using this scheme, the frequency of the transmitted wireless signals can be tuned by adjusting the wavelength of the input light. The 1.25 Gb/s on-off keying signals with the carrier frequency of 8–14.5 GHz are generated and transmitted through a radio over fiber link. The envelope detecting technique is employed in the receiver to support the down-conversion and demodulation. Electrical local oscillators are not required in the transmitter and receiver end, which simplifies the system structure and lowers the cost.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (707 KB)


Posted online:2017/9/8

Get Citation: Houjun Wang, Lianshan Yan, Jia Ye, Bin Luo, Wei Pan, Xihua Zou, and Peixuan Li, "Frequency-tunable wireless access scheme based on the optoelectronic oscillating technique," Chin. Opt. Lett. 15(11), 112301(2017)

Note: This work was supported by the National High Technology Research and Development Program of China (No. 2015AA016903) and the National Natural Science Foundation of China (Nos. 61405165, 61335005, and 61325023).


1. A. S. Gowda, A. R. Dhaini, L. G. Kazovsky, H. Yang, S. T. Abraha, and A. Ng’oma, J. Lightwave Technol. 32, 3545 (2014).

2. Y. Fan, J. Li, Y. Lei, M. Tang, F. Yin, Y. Dai, and K. Xu, Chin. Opt. Lett. 15, 010011 (2017).

3. C. Gao, S. Huang, J. Xiao, X. Gao, Q. Wang, Y. Wei, W. Zhai, W. Xu, and W. Gu, Chin. Opt. Lett. 13, 010604 (2015).

4. D. Novak, J. Quantum Electron. 52, 1 (2016).

5. G.-K. Chang, C. Liu, and L. Zhang, in IEEE International Conference on Communications Workshops (ICC) (2013).

6. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, and X. Yu, Opt. Express 19, 24944 (2011).

7. J. Yin, K. Xu, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of OFC (2009).

8. P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, J. Lightwave Technol. 32, 3910 (2014).

9. L. Maleki, Nat. Photon. 5, 728 (2011).

10. T. Berceli, and P. R. Herczfeld, IEEE Trans. Microwave Theory Tech. 58, 2992 (2010).

11. X. Zou, X. Liu, W. Li, P. Li, W. Pan, L. Yan, and L. Shao, IEEE J. Quantum Electron. 52, 1 (2016).

12. X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, IEEE Photon. J. 5, 6600606 (2013).

13. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, Opt. Lett. 38, 655 (2013).

14. W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 60, 1735 (2012).

15. S. Poinsot, H. Porte, J. P. Goedgebuer, W. T. Rhodes, and B. Boussert, Opt. Lett. 27, 1300 (2002).

16. F. Zeng, and J. P. Yao, J. Lightwave Technol. 23, 1721 (2005).

17. Y. Gao, A. Wen, L. Liu, S. Tian, S. Xiang, and Y. Wang, J. Lightwave Technol. 33, 2899 (2015).

Save this article's abstract as
Copyright©2014 Chinese Optics Letters 沪ICP备05015387