2018-07-19 Welcome guest,  Sign In  |  Sign Up
Chin. Opt. Lett.
 Home  List of Issues    Issue 05 , Vol. 16 , 2018    10.3788/COL201816.050003

High-efficiency multi-wavelength metasurface with complete independent phase control
Jing Yan1;2, Yinghui Guo1;2, Mingbo Pu1;2, Xiong Li1;2, Xiaoliang Ma1;2, and Xiangang Luo1;2
1 State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, [Institute of Optics and Electronics, Chinese Academy of Sciences], Chengdu 61 0209, China
2 [University of Chinese Academy of Sciences], Beijing 100049, China

Chin. Opt. Lett., 2018, 16(05): pp.050003

Keywords(OCIS Code): 160.3918  350.4010  120.7000  

As a consequence of Kramers–Kronig relations, the wavelength-dependent behavior of the metasurface is one of the critical limitations in existing metasurface structures, which reduces the design freedom among different wavelengths. Here, we present an approach to construct a high-efficiency multi-wavelength metasurface with independent phase control by coding different wavelengths into orthogonal polarizations. As proof of the concept, two dual-band metasurfaces have been proposed and numerically demonstrated by multiple vortex beam generation in near-field and polarization multiplexing achromatic beam deflection. Furthermore, simulated results show that the proposed metasurface exhibits high transmission efficiency at both wavelengths, which may find widespread applications in subwavelength electromagnetics.

Copyright: © 2003-2012 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 View PDF (1039 KB)


Posted online:2018/4/23

Get Citation: Jing Yan, Yinghui Guo, Mingbo Pu, Xiong Li, Xiaoliang Ma, and Xiangang Luo, "High-efficiency multi-wavelength metasurface with complete independent phase control," Chin. Opt. Lett. 16(05), 050003(2018)

Note: This work was supported by the 973 Program of China (No. 2013CBA01700) and the National Natural Science Foundation of China (No. 61575201).


1. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).

2. J. B. Pendry, Phy. Rev. Lett. 85, 3966 (2000).

3. X. Luo, and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).

4. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, Appl. Phys. Lett. 106, 093110 (2015).

5. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, Laser Photon. Rev. 9, 713 (2016).

6. X. Luo, Sci. China: Phys. Mech. Astron. 58, 594201 (2015).

7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

8. T. Xu, C. Wang, C. Du, and X. Luo, Opt. Express 16, 4753 (2008).

9. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, Appl. Phys. Lett. 102, 131906 (2013).

10. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, Science 340, 1304 (2013).

11. W. Zhu, Q. Song, L. Yan, W. Zhang, P. C. Wu, L. K. Chin, H. Cai, D. P. Tsai, Z. X. Shen, and T. W. Deng, Adv. Mater. 27, 4739 (2015).

12. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, Sci. Adv. 2, e1601102 (2016).

13. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, Nat. Nanotech. 10, 308 (2015).

14. W. Wan, J. Gao, and X. Yang, ACS Nano 10, 10671 (2016).

15. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, and H. Ren, Sci. Adv. 1, e1500396 (2015).

16. Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. Jin, P. Gao, X. Li, X. Ma, and X. Luo, ACS Photonics 3, 2022 (2016).

17. J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, and X. Luo, Sci. Rep. 6, 24286 (2016).

18. X. Luo, M. Pu, X. Li, and X. Ma, Light Sci. Appl. 6, e16276 (2017).

19. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, Opt. Express 19, 17413 (2011).

20. Y. Guo, Y. Wang, M. Pu, Z Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, Sci. Rep. 5, 8434 (2015).

21. Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, Appl. Phys. B 122, 178 (2016).

22. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, J. Appl. Phys. 110, 014909 (2011).

23. Q. Du, J. Liu, and H. Yang, Chin. Opt. Lett. 9, 110015 (2011).

24. Y. Guo, L. Yan, W. Pan, and B. Luo, Opt Express 23, 237566 (2015).

25. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, Sci. Rep. 6, 19885 (2016).

26. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, Science, 347, 1342 (2015).

27. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, Nano Lett. 15, 5358 (2015).

28. J. Ding, N. Xu, R. Han, Y. Lin, W. Zhang, and H. Zhang, Sci. Rep, 6, 34020 (2016).

29. J. Ding, S. An, B. Zheng, and H. Zhang, Adv. Opt. Mater. 5, 10 (2017).

30. H. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Mater. 27, 5410 (2015).

31. Z. Li, W. Liu, H. Cheng, J. Liu, S. Chen, and J. Tian, Sci. Rep. 6, 35485 (2016).

32. P. Yu, J. Li, C. Tang, H. Cheng, Z. Liu, Z. Li, Z. Liu, C. Gu, J. Li, S. Chen, and J. Tian, Light: Sci. Appl. 5, e16096 (2016).

33. Q. Zhan, Opt. Lett. 31, 867 (2006).

Save this article's abstract as
Copyright©2018 Chinese Optics Letters 沪ICP备05015387